Overview of Positron Emission Tomography, Hybrid Positron Emission Tomography Instrumentation, and Positron Emission Tomography Quantification

Positron emission tomography (PET) is a powerful quantitative molecular imaging technique that is complementary to structural imaging techniques for purposes of disease detection and characterization. This review article provides a brief overview of PET, hybrid PET instrumentation, and PET quantification.

[1]  R. Coleman,et al.  Recommendations on the Use of 18F-FDG PET in Oncology , 2008, Journal of Nuclear Medicine.

[2]  T. Turkington,et al.  A systematic review of the factors affecting accuracy of SUV measurements. , 2010, AJR. American journal of roentgenology.

[3]  Habib Zaidi,et al.  Novel quantitative techniques for assessing regional and global function and structure based on modern imaging modalities: implications for normal variation, aging and diseased states. , 2007, Seminars in nuclear medicine.

[4]  Thomas Beyer,et al.  Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[5]  Abass Alavi,et al.  Feasibility and performance of novel software to quantify metabolically active volumes and 3D partial volume corrected SUV and metabolic volumetric products of spinal bone marrow metastases on 18F-FDG-PET/CT. , 2011, Hellenic journal of nuclear medicine.

[6]  C. Claussen,et al.  Pulmonary lesion assessment: comparison of whole-body hybrid MR/PET and PET/CT imaging--pilot study. , 2012, Radiology.

[7]  Preliminary study of whole-body diffusion-weighted imaging in detecting pulmonary metastatic lesions from clear cell renal cell carcinoma: comparison with CT , 2011, Acta radiologica.

[8]  S C Huang,et al.  Anatomy of SUV. Standardized uptake value. , 2000, Nuclear medicine and biology.

[9]  A. Alavi,et al.  Fundamentals of PET and PET/CT imaging , 2011, Annals of the New York Academy of Sciences.

[10]  H. Kauczor,et al.  Computed tomography and magnetic resonance imaging in cystic fibrosis lung disease , 2010, Journal of magnetic resonance imaging : JMRI.

[11]  A. Alavi,et al.  Quantitative analysis of PET and MRI data in normal aging and Alzheimer's disease: atrophy weighted total brain metabolism and absolute whole brain metabolism as reliable discriminators. , 1993, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[12]  Thomas Beyer,et al.  Dual-modality PET/CT instrumentation-today and tomorrow. , 2010, European journal of radiology.

[13]  Sanjiv S Gambhir,et al.  Molecular imaging techniques in body imaging. , 2007, Radiology.

[14]  John L. Humm,et al.  Tumor Treatment Response Based on Visual and Quantitative Changes in Global Tumor Glycolysis Using PET-FDG Imaging. The Visual Response Score and the Change in Total Lesion Glycolysis. , 1999, Clinical positron imaging : official journal of the Institute for Clinical P.E.T.

[15]  Paul Kinahan,et al.  A combined PET/CT scanner for clinical oncology. , 2000, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  T. Watabe,et al.  Evaluation of Response to Neoadjuvant Chemotherapy for Esophageal Cancer: PET Response Criteria in Solid Tumors Versus Response Evaluation Criteria in Solid Tumors , 2012, The Journal of Nuclear Medicine.

[17]  A. Alavi,et al.  Use of a corrected standardized uptake value based on the lesion size on CT permits accurate characterization of lung nodules on FDG-PET , 2002, European Journal of Nuclear Medicine and Molecular Imaging.

[18]  D. Vanel,et al.  MRI of bone marrow disorders , 2000, European Radiology.

[19]  Abass Alavi,et al.  Quantitative assessment of the atherosclerotic burden of the aorta by combined FDG-PET and CT image analysis: a new concept. , 2006, Nuclear medicine and biology.

[20]  P. Roch,et al.  National survey of patient doses from whole-body FDG PET-CT examinations in France in 2011. , 2012, Radiation protection dosimetry.

[21]  Sung-Cheng Huang,et al.  Anatomy of SUV , 2000 .

[22]  J. Finn,et al.  Cardiac MR imaging: state of the technology. , 2006, Radiology.

[23]  Suleman Surti,et al.  A recovery coefficient method for partial volume correction of PET images , 2009, Annals of nuclear medicine.

[24]  G. Antoch,et al.  Oncologic PET/MRI, Part 1: Tumors of the Brain, Head and Neck, Chest, Abdomen, and Pelvis , 2012, The Journal of Nuclear Medicine.

[25]  Naoto T. Ueno,et al.  Cancer Response Criteria and Bone Metastases: RECIST 1.1, MDA and PERCIST , 2010, Journal of Cancer.

[26]  A. Bruskin,et al.  110mIn-DTPA-D-Phe1-octreotide for imaging of neuroendocrine tumors with PET. , 2002, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  Hans-Ulrich Kauczor,et al.  MRI of the lung: state of the art. , 2012, Diagnostic and interventional radiology.

[28]  A. Alavi,et al.  Quantitative Assessment of the Hepatic Metabolic Volume Product in Patients with Diffuse Hepatic Steatosis and Normal Controls Through Use of FDG-PET and MR Imaging: A Novel Concept , 2010, Molecular Imaging and Biology.

[29]  David W Townsend,et al.  Positron emission tomography/computed tomography. , 2008, Seminars in nuclear medicine.

[30]  I. Buvat,et al.  Partial-Volume Effect in PET Tumor Imaging* , 2007, Journal of Nuclear Medicine.

[31]  N. Müller Imaging of the pleura. , 1993, Radiology.

[32]  A. Alavi,et al.  Current Evidence Base of FDG-PET/CT Imaging in the Clinical Management of Malignant Pleural Mesothelioma: Emerging Significance of Image Segmentation and Global Disease Assessment , 2011, Molecular Imaging and Biology.

[33]  K. Herholz,et al.  Measurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. European Organization for Research and Treatment of Cancer (EORTC) PET Study Group. , 1999, European journal of cancer.

[34]  J. Keyes SUV: standard uptake or silly useless value? , 1995, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[35]  A. Lammertsma,et al.  Monitoring response to therapy in cancer using [18F]-2-fluoro-2-deoxy-d-glucose and positron emission tomography: an overview of different analytical methods , 2000, European Journal of Nuclear Medicine.

[36]  L. Schwartz,et al.  New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). , 2009, European journal of cancer.

[37]  R. Wahl,et al.  From RECIST to PERCIST: Evolving Considerations for PET Response Criteria in Solid Tumors , 2009, Journal of Nuclear Medicine.

[38]  C. Kuhl Current status of breast MR imaging. Part 2. Clinical applications. , 2007, Radiology.

[39]  Abass Alavi,et al.  Functional Imaging of Cancer with Emphasis on Molecular Techniques , 2007, CA: a cancer journal for clinicians.

[40]  T. Takahara,et al.  Cancer imaging: novel concepts in clinical magnetic resonance imaging , 2010, Journal of internal medicine.

[41]  Osama Mawlawi,et al.  Multimodality imaging: an update on PET/CT technology , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[42]  A. Alavi,et al.  Functional oncoimaging techniques with potential clinical applications. , 2012, Frontiers in bioscience.

[43]  P. Conti,et al.  Radiopharmaceutical chemistry for positron emission tomography. , 2010, Advanced drug delivery reviews.

[44]  Liane Oehme,et al.  A method for model-free partial volume correction in oncological PET , 2012, EJNMMI Research.

[45]  Liane Oehme,et al.  Automatische Volumenabgrenzung in der onkologischen PET – Bewertung eines entsprechenden Software-Werkzeugs und Vergleich mit manueller Abgrenzung anhand klinischer Datensätze , 2012 .

[46]  R. Boellaard Standards for PET Image Acquisition and Quantitative Data Analysis , 2009, Journal of Nuclear Medicine.

[47]  A. Alavi,et al.  Unparalleled contribution of 18F-FDG PET to medicine over 3 decades. , 2008, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[48]  A. Alavi,et al.  Suboptimal and inadequate quantification: an alarming crisis in medical applications of PET , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[49]  F Hofheinz,et al.  Automatic volume delineation in oncological PET , 2011, Nuklearmedizin.

[50]  David W Townsend,et al.  Dual-Modality Imaging: Combining Anatomy and Function* , 2008, Journal of Nuclear Medicine.

[51]  Suleman Surti,et al.  Benefit of Time-of-Flight in PET: Experimental and Clinical Results , 2008, Journal of Nuclear Medicine.

[52]  Lilli Geworski,et al.  Recovery correction for quantitation in emission tomography: a feasibility study , 2000, European Journal of Nuclear Medicine.

[53]  J. Karp,et al.  Performance of Philips Gemini TF PET/CT scanner with special consideration for its time-of-flight imaging capabilities. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[54]  T. Turkington,et al.  Clinical applications of PET in oncology. , 2004, Radiology.

[55]  M. Conti Focus on time-of-flight PET: the benefits of improved time resolution , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[56]  O. Schulte,et al.  MR imaging of the chest: Mediastinum and chest wall , 1999, European Radiology.

[57]  A. Margulis Molecular imaging: love it or lose it. , 2012, Radiology.

[58]  W. Huda,et al.  Imaging strategies to reduce the risk of radiation in CT studies, including selective substitution with MRI , 2007, Journal of magnetic resonance imaging : JMRI.