Visualization tool for a terrain-based genetic algorithm

We describe and implement a visualization tool applet for a Terrain-based genetic algorithm (TBGA). The TBGA is a self-tuning version of the cellular genetic algorithm (CGA), wherein various combinations of parameter values appear in different physical locations of the population. The TBGA is useful for solving optimization problems as well as for finding good CGA parameter values. By tallying the number of times a new best individual is found for each location in the population, the applet illustrates the progress of evolution as a gradually evolving terrain map showing effective locations as having increasing altitude. We contrast two methods for using the TBGA to determine good parameter settings. The tool can also help educate users unfamiliar with the TBGA and how it works.

[1]  Shumeet Baluja,et al.  Structure and Performance of Fine-Grain Parallelism in Genetic Search , 1993, ICGA.

[2]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[3]  L. Darrell Whitley,et al.  Cellular Genetic Algorithms , 1993, ICGA.

[4]  V. Scott Gordon,et al.  Terrain-Based Genetic Algorithm (TBGA): Modeling Parameter Space as Terrain , 1999, GECCO.

[5]  Stephanie Forrest,et al.  Proceedings of the 5th International Conference on Genetic Algorithms , 1993 .

[6]  Martina Gorges-Schleuter,et al.  ASPARAGOS An Asynchronous Parallel Genetic Optimization Strategy , 1989, ICGA.

[7]  Christopher R. Stephens,et al.  "Optimal" mutation rates for genetic search , 2006, GECCO.

[8]  Mark Harman,et al.  ACM Symposium on Applied Computing, (SAC'00) , 2000 .

[9]  Bernard Manderick,et al.  Fine-Grained Parallel Genetic Algorithms , 1989, ICGA.

[10]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[12]  L. Darrell Whitley,et al.  Fundamental Principles of Deception in Genetic Search , 1990, FOGA.

[13]  David E. Goldberg,et al.  Sizing Populations for Serial and Parallel Genetic Algorithms , 1989, ICGA.

[14]  L. Darrell Whitley,et al.  Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.

[15]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[16]  Rajarshi Das,et al.  A Study of Control Parameters Affecting Online Performance of Genetic Algorithms for Function Optimization , 1989, ICGA.

[17]  L. Darrell Whitley,et al.  Cellular genetic algorithms as function optimizers: locality effects , 1994, SAC '94.

[18]  Yuval Davidor,et al.  The Interplay Among the Genetic Algorithm Operators: Information Theory Tools Used in a Holistic Way , 1992, PPSN.

[19]  Dan Boneh,et al.  On genetic algorithms , 1995, COLT '95.