Band limited data reconstruction in modulated polarimeters.

Data processing for sequential in time polarimeters based on the Data Reduction Matrix technique yield polarization artifacts in the presence of time varying signals. To overcome these artifacts, polarimeters are designed to operate at higher and higher speeds. In this paper we describe a band limited reconstruction algorithm that allows the measurement and processing of temporally varying Stokes parameters without artifacts. An example polarimeter consisting of a rotating retarder and polarizer is considered, and conventional processing methods are compared to a band limited reconstruction algorithm for the example polarimeter. We demonstrate that a significant reduction in error is possible using these methods.

[1]  Jason Mudge,et al.  First high-resolution passive polarimetric images of boosting rocket exhaust plumes , 2009, Optical Engineering + Applications.

[2]  K. Oka,et al.  Compact complete imaging polarimeter using birefringent wedge prisms. , 2003, Optics express.

[3]  Brian Cairns,et al.  Dual-photoelastic-modulator-based polarimetric imaging concept for aerosol remote sensing. , 2007, Applied optics.

[4]  C. Weitkamp Lidar, Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[5]  A. Andreou,et al.  Polarization imaging: principles and integrated polarimeters , 2002 .

[6]  Matthew H. Smith,et al.  Beam wander considerations in imaging polarimetry , 1999, Optics + Photonics.

[7]  J Scott Tyo,et al.  Review of passive imaging polarimetry for remote sensing applications. , 2006, Applied optics.

[8]  G. S. Phipps,et al.  Optimization of retardance for a complete Stokes polarimeter. , 2000, Optics letters.

[9]  J. Tyo Design of optimal polarimeters: maximization of signal-to-noise ratio and minimization of systematic error. , 2002, Applied optics.

[10]  K. Oka,et al.  Spectroscopic polarimetry with a channeled spectrum. , 1999, Optics letters.

[11]  Rasheed M. A. Azzam,et al.  General analysis and optimization of the four- detector photopolarimeter , 1988 .

[12]  F. Goudail,et al.  Estimation precision of the degree of linear polarization and of the angle of polarization in the presence of different sources of noise. , 2010, Applied optics.

[13]  Mark P. Silverman,et al.  Object delineation within turbid media by backscattering of phase-modulated light , 1997 .

[14]  J Scott Tyo,et al.  Interpolation strategies for reducing IFOV artifacts in microgrid polarimeter imagery. , 2009, Optics express.

[15]  A. Ambirajan,et al.  Optimum Angles for a Polarimeter: Part II , 1995 .

[16]  Russell A. Chipman,et al.  Diffraction image formation in optical systems with polarization aberrations. I - Formulation and example , 1990 .

[17]  J S Tyo,et al.  Variable-retardance, Fourier-transform imaging spectropolarimeters for visible spectrum remote sensing. , 2001, Applied optics.

[18]  R. Chipman Polarization analysis of optical systems , 1989 .

[19]  Laurent Bigué,et al.  High-speed imaging acquisition of Stokes linearly polarized components using a single ferroelectric liquid crystal modulator , 2009, Optical Engineering + Applications.

[20]  J S Tyo,et al.  Target detection in optically scattering media by polarization-difference imaging. , 1996, Applied optics.

[21]  George F. Reyes,et al.  Analysis of AOTF Hyperspectral Imagery , 1994 .

[22]  Bradley M. Ratliff,et al.  Total elimination of sampling errors in polarization imagery obtained with integrated microgrid polarimeters. , 2009, Optics letters.

[23]  Michael Bass,et al.  Handbook of optics , 1995 .

[24]  Rainer M. E. Illing,et al.  High-speed fieldable imaging Stokes vector polarimeter , 2005, SPIE Optics + Photonics.

[25]  J. L. Pezzaniti,et al.  Polarization imaging through scattering media , 2000, SPIE Optics + Photonics.

[26]  David B. Chenault,et al.  A division of aperture MWIR imaging polarimeter , 2005, SPIE Optics + Photonics.

[27]  Charles D. Creusere,et al.  Image segmentation from multi-look passive polarimetric imagery , 2007, SPIE Optical Engineering + Applications.

[28]  Shree K. Nayar,et al.  Polarization-based vision through haze , 2003 .

[29]  Kenneth Sassen,et al.  Polarization in Lidar , 2005 .