Blow-up Estimates of the Positive Solution of a Parabolic System

This paper establishes the blow-up estimates for the systems ut − Δu = 0, vt − Δv = 0 in BR × (0, T), BR ⊂ Rn, with the nonlinear boundary conditions ∂u∂η=um1vn1 and ∂v∂η=um2vn2 on SR × (0, T) where 0 ≤ m1 < 1 + m2 and 0 ≤ n2 < 1 + n1. We prove that c(T − t)− α/2 ≤ max u(x, t) ≤ C(T − t)− α/2 and c(T − t)− β/2 ≤ max v(x, t) ≤ C(T − t)− β/2 under some monotonicity assumptions on the initial values, where α = (n1 − n2 + 1)/γ, β = (m2 − m1 + 1)/γ, and γ = n1m2 − (1 − m1)(1 − n2).

[1]  Mingxin Wang,et al.  Quasilinear Reaction–Diffusion Systems with Nonlinear Boundary Conditions☆☆☆ , 1999 .

[2]  Pavol Quittner,et al.  The Blow-Up Rate for a Semilinear Parabolic System , 1999 .

[3]  Enrique Zuazua,et al.  Recent advances in partial differential equations , 1994 .

[4]  Lin Zhigui,et al.  The blow-up rate for a system of heat equations with nonlinear boundary conditions , 1998 .

[5]  Marek Fila Boundedness of global solutions for the heat equation with nonlinear boundary conditions , 1989 .

[6]  Keng Deng,et al.  ON CRITICAL EXPONENTS FOR A SYSTEM OF HEAT EQUATIONS COUPLED IN THE BOUNDARY CONDITIONS , 1994 .

[7]  Hong-Ming Yin,et al.  The profile near blowup time for solution of the heat equation with a nonlinear boundary condition , 1994 .

[8]  Y. Giga,et al.  Asymptotically self‐similar blow‐up of semilinear heat equations , 1985 .

[9]  Yoshikazu Giga,et al.  A single point blow-up for solutions of semilinear parabolic systems , 1987 .

[10]  Howard A. Levine,et al.  A Fujita type global existence-global nonexistence theorem for a weakly coupled system of reaction-diffusion equations , 1991 .

[11]  A. Friedman Partial Differential Equations of Parabolic Type , 1983 .

[12]  Howard A. Levine,et al.  On Critical Exponents for a Semilinear Parabolic System Coupled in an Equation and a Boundary Condition , 1996 .

[13]  Keng Deng,et al.  Blow-up rates for parabolic systems , 1996 .

[14]  Miroslav Chlebík,et al.  On the blow-up rate for the heat equation with a nonlinear boundary condition , 2000 .

[15]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[16]  Joanna Rencławowicz,et al.  Global existence and blow up of solutions for a completely coupled Fujita type system of reaction-diffusion equations , 1998 .

[17]  Keng Deng,et al.  Global existence and blow-up for a system of heat equations with non-linear boundary conditions* , 1995 .

[18]  Keng Deng,et al.  The Role of Critical Exponents in Blow-Up Theorems: The Sequel , 2000 .

[19]  Sining Zheng Nonexistence of positive solutions to a semilinear elliptic system and blow-up estimates for a reaction-diffusion system , 1999 .

[20]  Bei Hu,et al.  Remarks on the blowup estimate for solution of the heat equation with a nonlinear boundary condition , 1996, Differential and Integral Equations.

[21]  Howard A. Levine,et al.  The Role of Critical Exponents in Blowup Theorems , 1990, SIAM Rev..

[22]  A. Friedman,et al.  Blow-up of positive solutions of semilinear heat equations , 1985 .

[23]  Yang Shi,et al.  Global Existence and Blow-up for a System of Heat Equations with Nonlinear Boundary Conditions , 2001 .