Development of Models and Algorithms for the Study of Reactive Porous Media Processes

We propose the use of implicit one-step ESDIRK (Explicit Singly Diagonal Implicit Runge-Kutta) methods for integration of the stiff kinetics in reactive, compositional and thermal processes that are solved using operator-splitting type approaches. To facilitate the algorithmic development we construct a virtual kinetic cell model. The model serves both as a tool for the development and testing of tailored solvers as well as a testbed for studying the interactions between chemical kinetics and phase behavior. As case study, two chemical kinetics models with 6 and 14 components, respectively, are implemented for in-situ combustion, a thermal oil recovery process. Through benchmark studies using the 14 component reaction model the new ESDIRK solvers are shown to improve computational speed when compared to the widely used multi-step BDF methods DASSL and LSODE. Phase changes are known to cause convergence problems for the integration method. We propose an algorithm for detection and location of phase changes based on discrete event system theory. Experiments show that the algorithm improves the robustness of the integration process near phase boundaries by lowering the number convergence and error test failures by more than 50% compared to direct integration without the new algorithm.

[1]  Michael L. Michelsen,et al.  Increasing the Computational Speed of Flash Calculations With Applications for Compositional, Transient Simulations , 2006 .

[2]  W. H. Chen,et al.  A Numerical Simulation Model for Thermal Recovery Processes , 1979 .

[3]  Yannis C. Yortsos,et al.  The Effect of Heterogeneity on In-situ Combustion: The Propagation of Combustion Fronts in Layered Porous Media , 2002 .

[4]  R. G. Moore,et al.  Case History and Appraisal of the West Buffalo Red River Unit High-Pressure Air Injection Project , 2007 .

[5]  H. J. Ramey,et al.  Reaction Kinetics of In-Situ Combustion: Part 1-Observations , 1984 .

[6]  Franklin M. Orr,et al.  Theory of Gas Injection Processes , 2005 .

[7]  Henry J. Ramey,et al.  Reaction Kinetics of In-Situ Combustion: Part 2--Modeling , 1984 .

[8]  J. Friedly Extent of reaction in open systems with multiple heterogeneous reactions , 1991 .

[9]  Margot Gerritsen,et al.  Coupling Chemical Kinetics and Flashes in Reactive, Thermal and Compositional Reservoir Simulation , 2007 .

[10]  Per Grove Thomsen Discontinuities in ODEs: Systems with Change of State , 2009 .

[11]  M. Durandeau,et al.  Laboratory Studies for Light Oil Air Injection Projects : Potential Application in Handil Field , 1999 .

[12]  M. Michelsen The isothermal flash problem. Part I. Stability , 1982 .

[13]  Hester Bijl,et al.  Implicit Time Integration Schemes for the Unsteady Compressible Navier–Stokes Equations: Laminar Flow , 2002 .

[14]  Margot Gerritsen,et al.  A Novel Adaptive Anisotropic Grid Framework for Efficient Reservoir Simulation , 2005 .

[15]  R. G. Moore,et al.  Combustion/Oxidation Behavior of Athabasca Oil Sands Bitumen , 1999 .

[16]  Kjell Gustafsson,et al.  Control of Error and Convergence in ODE Solvers , 1992 .

[17]  A. Kværnø,et al.  Norges Teknisk-naturvitenskapelige Universitet Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage Singly Diagonally Implicit Runge-kutta Methods with an Explicit First Stage , 2022 .

[18]  Wayne H. Enright,et al.  Interpolants for Runge-Kutta formulas , 1986, TOMS.

[19]  Michael Locht Michelsen,et al.  Thermodynamic Modelling: Fundamentals and Computational Aspects , 2004 .

[20]  H. H. Rosenbrock,et al.  Some general implicit processes for the numerical solution of differential equations , 1963, Comput. J..

[21]  R. Alexander,et al.  Design and implementation of DIRK integrators for stiff systems , 2003 .

[22]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[23]  Byung-Ik Lee,et al.  A generalized thermodynamic correlation based on three‐parameter corresponding states , 1975 .

[24]  Chorng H. Twu,et al.  An internally consistent correlation for predicting the critical properties and molecular weights of petroleum and coal-tar liquids , 1984 .

[25]  Roger M. Butler,et al.  Theoretical studies on the gravity drainage of heavy oil during in‐situ steam heating , 1981 .

[26]  P. F. Fulton,et al.  Low-Temperature-Oxidation Reaction Kinetics and Effects on the In-Situ Combustion Process , 1974 .

[27]  Y. Yortsos,et al.  Steady-State Propagation of In-situ Combustion Fronts with Sequential Reactions , 2004 .

[28]  Jarle Haukås Compositional reservoir simulation with emphasis on the IMPSAT formulation , 2006 .

[29]  N. Freitag,et al.  A SARA-Based Model for Simulating the Pyrolysis Reactions That Occur in High- Temperature EOR Processes , 2002 .

[30]  John C. Butcher,et al.  A new type of singly-implicit Runge-Kutta method , 2000 .

[31]  Margot Gerritsen,et al.  Efficient integration of stiff kinetics with phase change detection for reactive reservoir processes , 2007 .

[32]  Rutherford Aris,et al.  Elementary Chemical Reactor Analysis , 1969 .

[33]  P. H. Sammon,et al.  Applications Of Dynamic Gridding To Thermal Simulations , 2004 .

[34]  Peter Knabner,et al.  A new numerical reduction scheme for fully coupled multicomponent transport‐reaction problems in porous media , 2005 .

[35]  A. Prothero,et al.  On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations , 1974 .

[36]  Malcolm Greaves,et al.  SPE-97728: Underground Upgrading of Heavy Oil Using THAI – ‘Toe-to-Heel Air Injection’ , 2005 .

[37]  Norman P. Freitag,et al.  Low-temperature oxidation of oils in terms of SARA fractions: Why simple reaction models don't work , 2003 .

[38]  S. Mehta,et al.  In situ combustion in Canadian heavy oil reservoirs , 1995 .

[39]  Yannis C. Yortsos,et al.  The dynamics of in-situ combustion fronts in porous media , 2003 .

[40]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[41]  John C. Friedly,et al.  Solute transport with multiple equilibrium‐controlled or kinetically controlled chemical reactions , 1992 .

[42]  Robert Gordon Moore,et al.  A Guide to High Pressure Air Injection (HPAI) Based Oil Recovery , 2002 .

[43]  Robert Gordon Moore,et al.  Low-Temperature Oxidation Kinetic Parameters for In-Situ Combustion Numerical Simulation , 1987 .

[44]  M. Gerritsen,et al.  Multiscale Process Coupling by Adaptive Fractional-Stepping; An In-Situ Combustion Model , 2006 .

[45]  Laurent Hascoët,et al.  TAPENADE 2.1 user's guide , 2004 .

[46]  N. Mahinpey,et al.  A Simple Kinetic Model for Coke Combustion During an In-Situ Combustion (ISC) Process , 2005 .

[47]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[48]  C. Dawson,et al.  Computational methods for multiphase flow and reactive transport problems arising in subsurface contaminant remediation , 1996 .

[49]  K. H. Coats In-Situ Combustion Model , 1980 .

[50]  A. P. Aldushin,et al.  Buoyancy driven filtration combustion , 1997 .

[51]  M. Carpenter,et al.  Additive Runge-Kutta Schemes for Convection-Diffusion-Reaction Equations , 2003 .

[52]  Karsten Pruess,et al.  TOURGHREACT: A Simulation Program for Non-isothermal MultiphaseReactive Geochemical Transport in Variably Saturated GeologicMedia , 2004 .

[53]  Zahari Zlatev,et al.  Computer Treatment of Large Air Pollution Models , 1995 .

[54]  John K. Reid,et al.  The design of MA48: a code for the direct solution of sparse unsymmetric linear systems of equations , 1996, TOMS.

[55]  M. R. Islam,et al.  State-of-the-Art of In-Situ Combustion Modeling and Operations , 1989 .

[56]  S. M. Farouq,et al.  MULTIPHASE, MULTIDIMENSIONAL SIMULATION OF IN SITU COMBUSTION , 1977 .

[57]  S. Stokka,et al.  Evaluation of Air Injection as an IOR Method for the Giant Ekofisk Chalk Field , 2005 .

[58]  T. J. Young,et al.  Field Scale Simulation Study Of In-Situ Combustion In High Pressure Light Oil Reservoirs , 1996 .

[59]  K. Aziz,et al.  Petroleum Reservoir Simulation , 1979 .

[60]  P. S. Sarathi,et al.  In-Situ Combustion Handbook -- Principles and Practices , 1999 .

[61]  Adrian Sandu,et al.  Benchmarking Stiff ODE Solvers for Atmospheric Chemistry Problems I: Implicit versus Explicit , 1996 .

[62]  Paul I. Barton,et al.  State event location in differential-algebraic models , 1996, TOMC.

[63]  T. H. Gillham,et al.  Keys to Increasing Production Via Air Injection in Gulf Coast Light Oil Reservoirs , 1997 .

[64]  Gour-Tsyh Yeh,et al.  A Model for Simulating Transport of Reactive Multispecies Components: Model Development and Demonstration , 1991 .

[65]  A. Kovscek,et al.  Laboratory Investigation of the Effect of Solvent Injection on In-Situ Combustion , 2006 .

[66]  M. Pascual Air injection into a mature waterflooded light oil reservoir. Laboratory and simulation results for Barrancas Field, Argentina , 2005 .

[67]  J. W. Grabowski,et al.  A Fully Implicit General Purpose Finite-Difference Thermal Model For In Situ Combustion And Steam , 1979 .

[68]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .