Lattices for Dynamic, Hierarchic & Overlapping Categorization: the Case of Epistemic Communities

We present a method for hierarchic categorization and taxonomy evolution description. We focus on the structure of epistemic communities (ECs), or groups of agents sharing common knowledge concerns. Introducing a formal framework based on Galois lattices, we categorize ECs in an automated and hierarchically structured way and propose criteria for selecting the most relevant epistemic communities - for instance, ECs gathering a certain proportion of agents and thus prototypical of major fields. This process produces a manageable, insightful taxonomy of the community. Then, the longitudinal study of these static pictures makes possible an historical description. In particular, we capture stylized facts such as field progress, decline, specialization, interaction (merging or splitting), and paradigm emergence. The detection of such patterns in social networks could fruitfully be applied to other contexts.

[1]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[2]  Patrick Cohendet,et al.  Organisational Innovation, Communities of Practice and Epistemic Communities: the Case of Linux , 2001 .

[3]  Paul A. David,et al.  The explicit economics of knowledge codification and tacitness , 2000 .

[4]  L. Zon,et al.  Zebrafish: a model system for the study of human disease. , 2000, Current opinion in genetics & development.

[5]  B. Berlin,et al.  Ethnobiological Classification: Principles of Categorization of Plants and Animals in Traditional Societies. , 1994 .

[6]  Marianne Huchard,et al.  ARES, Adding a class and REStructuring Inheritance Hierarchy , 1995, BDA.

[7]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[8]  Henry Kreuzman,et al.  A co-citation analysis of representative authors in philosophy: Examining the relationship between epistemologists and philosophers of science , 2004, Scientometrics.

[9]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[10]  Rokia Missaoui,et al.  Design of Class Hierarchies Based on Concept (Galois) Lattices , 1998, Theory Pract. Object Syst..

[11]  Radim Bělohlávek,et al.  Fuzzy galois connections and fuzzy concept lattices: from binary relations to conceptual structures , 2000 .

[12]  J. Desclés,et al.  Logique et dynamique de la cognition , 1996 .

[13]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[14]  Katherine W. McCain,et al.  Cocited author mapping as a valid representation of intellectual structure , 1986, J. Am. Soc. Inf. Sci..

[15]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[16]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[17]  Olivier Ridoux,et al.  A File System Based on Concept Analysis , 2000, Computational Logic.

[18]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[19]  Jean-Benoît Zimmermann,et al.  Émergence, formation et dynamique des réseaux. Modèles de la morphogenèse , 2003 .

[20]  Loet Leydesdorff,et al.  The static and dynamic analysis of network data using information theory , 1991 .

[21]  J. Bradbury,et al.  Small Fish, Big Science , 2004, PLoS biology.

[22]  P. Haas Introduction: epistemic communities and international policy coordination , 1992, International Organization.

[23]  R. Whittaker New concepts of kingdoms of organisms , 1969 .

[24]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .

[25]  J. Eisen,et al.  Headwaters of the zebrafish — emergence of a new model vertebrate , 2002, Nature Reviews Genetics.

[26]  Giovanni Maria Sacco,et al.  Dynamic Taxonomies: A Model for Large Information Bases , 2000, IEEE Trans. Knowl. Data Eng..

[27]  Edward E. Smith,et al.  The Tree of Life: Universal and Cultural Features of Folkbiological Taxonomies and Inductions , 1997, Cognitive Psychology.

[28]  Ron Atkin,et al.  Mathematical structure in human affairs , 1976 .

[29]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[30]  P. Sneath,et al.  Numerical Taxonomy , 1962, Nature.

[31]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[32]  Paul Bourgine,et al.  Epistemic Communities: Description and Hierarchic Categorization , 2004, ArXiv.

[33]  Anthony F. J. van Raan,et al.  Monitoring Scientific Developments from a Dynamic Perspective: Self-Organized Structuring to Map Neural Network Research , 1998, Journal of the American Society for Information Science.

[34]  Lc Freeman,et al.  USING GALOIS LATTICES TO REPRESENT NETWORK DATA , 1993 .

[35]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[36]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[37]  Derrick G. Kourie,et al.  Compressed pseudo-lattices , 2002, J. Exp. Theor. Artif. Intell..

[38]  Vincent Duquenne,et al.  Structuration of phenotypes and genotypes through galois lattices and implications , 2003, Appl. Artif. Intell..

[39]  H. White,et al.  “Structural Equivalence of Individuals in Social Networks” , 2022, The SAGE Encyclopedia of Research Design.