Exponential fitting BDF-Runge-Kutta algorithms

In other papers, the authors presented exponential fitting methods of BDF type. Now, these methods are used to derive some BDF–Runge–Kutta type formulas (of second-, third- and fourth-order), capable of the exact integration (with only round-off errors) of differential equations whose solutions are linear combinations of an exponential with parameter A and ordinary polynomials. Theorems of the truncation error reveal the good behavior of the new methods for stiff problems. Plots of their absolute stability regions that include the whole of the negative real axis are provided. Different procedures to find the parameter of the method are proposed, using these techniques there will not be necessary to compute the exponential matrix at each step, even when nonlinear problems are integrated. Numerical examples underscore the efficiency of the proposed codes, especially when they are integrating stiff problems.

[1]  G. D. Byrne,et al.  VODE: a variable-coefficient ODE solver , 1989 .

[2]  Richard C Aiken,et al.  Stiff computation , 1985 .

[3]  J. Gillis,et al.  Asymptotic Methods in the Theory of Non‐Linear Oscillations , 1963 .

[4]  Jesús Vigo-Aguiar,et al.  Exponential fitting BDF algorithms and their properties , 2007, Appl. Math. Comput..

[5]  L. Petzold A description of dassl: a differential/algebraic system solver , 1982 .

[6]  R. Alexander Diagonally implicit runge-kutta methods for stiff odes , 1977 .

[7]  Jeff Cash,et al.  The integration of stiff initial value problems in ODEs using modified extended backward differentiation formulae , 1983 .

[8]  Yousef Saad,et al.  Efficient Solution of Parabolic Equations by Krylov Approximation Methods , 1992, SIAM J. Sci. Comput..

[9]  L. Trefethen,et al.  Stiffness of ODEs , 1993 .

[10]  Ralph A. Willoughby,et al.  EFFICIENT INTEGRATION METHODS FOR STIFF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS , 1970 .

[11]  L. Tuckerman,et al.  A method for exponential propagation of large systems of stiff nonlinear differential equations , 1989 .

[12]  Nguyen Huu Cong,et al.  A-stable diagonally implicit Runge-Kutta-Nyström methods for parallel computers , 1993, Numerical Algorithms.

[13]  H. Stetter Analysis of Discretization Methods for Ordinary Differential Equations , 1973 .

[14]  W. S. Edwards,et al.  Krylov methods for the incompressible Navier-Stokes equations , 1994 .

[15]  L. Fox,et al.  Chebyshev polynomials in numerical analysis , 1970 .

[16]  C. Loan,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix , 1978 .

[17]  J. Vaquero Métodos exponential fitting y adaptados para problemas stiff , 2006 .

[18]  H. De Meyer,et al.  Weights of the exponential fitting multistep algorithms for first-order ODEs , 2001 .

[19]  J. R. Cash,et al.  Diagonally Implicit Runge-Kutta Formulae with Error Estimates , 1979 .

[20]  C F Curtiss,et al.  Integration of Stiff Equations. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Liviu Gr. Ixaru,et al.  P-stability and exponential-fitting methods for y″″ = f(x, y) , 1996 .

[22]  Ernst Hairer,et al.  Rosenbrock-Type Methods , 1996 .

[23]  Christoph Fredebeul,et al.  A-BDF: A Generalization of the Backward Differentiation Formulae , 1998 .

[24]  R. Kosloff Propagation Methods for Quantum Molecular Dynamics , 1994 .

[25]  J. Butcher The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .

[26]  Higinio Ramos,et al.  A fourth-order Runge-Kutta method based on BDF-type Chebyshev approximations , 2007 .

[27]  J. Lambert Numerical Methods for Ordinary Differential Systems: The Initial Value Problem , 1991 .

[28]  T. E. Simos,et al.  Controlling the error growth in long–term numerical integration of perturbed oscillations in one or several frequencies , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  H. Meyer,et al.  Four-step exponential-fitted methods for nonlinear physical problems , 1997 .

[30]  Nguyen Huu Cong,et al.  Analysis of trigonometric implicit Runge-Kutta methods , 2007 .

[31]  E. Hairer,et al.  Solving Ordinary Differential Equations I , 1987 .

[32]  A. Hindmarsh LSODE and LSODI, two new initial value ordinary differential equation solvers , 1980, SGNM.

[33]  Jesús Vigo-Aguiar,et al.  On the stability of exponential fitting BDF algorithms , 2005 .

[34]  Roger B. Sidje,et al.  Expokit: a software package for computing matrix exponentials , 1998, TOMS.

[35]  M. N. Spijker Stiffness in numerical initial-value problems , 1996 .

[36]  P. J. van der Houwen,et al.  Parallel linear system solvers for Runge-Kutta-Nyström methods , 1997 .

[37]  H. De Meyer,et al.  Exponentially fitted variable two-step BDF algorithm for first order ODEs☆ , 2003 .

[38]  R. Scherer A necessary condition forB-stability , 1979 .

[39]  H. De Meyer,et al.  Frequency evaluation in exponential fitting multistep algorithms for ODEs , 2002 .

[40]  C. W. Gear,et al.  Algorithm 407 DIFSUB for Solution of Ordinary Differential Equations , 1971 .

[41]  Jason Frank,et al.  Parallel iteration of the extended backward differentiation formulas , 1999 .

[42]  Jesús Vigo-Aguiar,et al.  Adapted BDF Algorithms: Higher-order Methods and Their Stability , 2007, J. Sci. Comput..

[43]  Hans Van de Vyver,et al.  Frequency evaluation for exponentially fitted Runge-Kutta methods , 2005 .

[44]  Jesús Vigo-Aguiar,et al.  Exponential fitting BDF algorithms: explicit and implicit 0-stable methods , 2006 .