A new algorithm for the geometric decomposition of a variety

In this article, we present a new met.hod for computing the deconiposition of a variety into irreducible componc:nts. It. is bawd on a property of Bczoutia.n mat.ricc:s; which allows us to c:omput,e a multiple of t.lio Chow form of t.he isolat,cil points of the varict.y and to deduce a rational representation of thcsc points. This t,ools is used recursively to compute t,he irreduc.iblc components from the lowest to the highest. dimension. The asymptotic complexity is of the same order t.han the best complesity bound known for this problem. Our approach provides a subst,nntial simplification of the previous methods and yields bounds on the height of polynomials involved in these representations. =\n iml.‘lelllrnt.ation in MAPLE of t.his algorithm is described at, thr end.

[1]  Joos Heintz,et al.  Algorithmes – disons rapides – pour la décomposition d’une variété algébrique en composantes irréductibles et équidimensionnelles , 1991 .

[2]  B. Mourrain,et al.  Algorithms for residues and Lojasiewicz exponents , 2000 .

[3]  Daniel Lazard,et al.  A new method for solving algebraic systems of positive dimension , 1991, Discret. Appl. Math..

[4]  Marie-Françoise Roy,et al.  Zeros, multiplicities, and idempotents for zero-dimensional systems , 1996 .

[5]  B. Mourrain,et al.  Algebraic Approach of Residues and Applications , 1996 .

[6]  D. Grigor'ev,et al.  Factorization of polynomials over a finite field and the solution of systems of algebraic equations , 1986 .

[7]  B. Mourrain,et al.  Some Applications of Bezoutians in Effective Algebraic Geometry , 1998 .

[8]  Michael Kalkbrener,et al.  A Generalized Euclidean Algorithm for Computing Triangular Representations of Algebraic Varieties , 1993, J. Symb. Comput..

[9]  Patrizia M. Gianni,et al.  Gröbner Bases and Primary Decomposition of Polynomial Ideals , 1988, J. Symb. Comput..

[10]  Fabrice Rouillier,et al.  Algorithmes efficaces pour l'etude des zeros reels des systemes polynomiaux , 1996 .

[11]  F. S. Macaulay On the resolution of a given modular system into primary systems including some properties of Hilbert numbers , 1913 .

[12]  John F. Canny,et al.  Generalised Characteristic Polynomials , 1990, J. Symb. Comput..

[13]  Bernard Mourrain,et al.  Computing the Isolated Roots by Matrix Methods , 1998, J. Symb. Comput..

[14]  Giovanni Gallo,et al.  Efficient algorithms and bounds for Wu-Ritt characteristic sets , 1991 .

[15]  James Renegar,et al.  On the Computational Complexity and Geometry of the First-Order Theory of the Reals, Part I: Introduction. Preliminaries. The Geometry of Semi-Algebraic Sets. The Decision Problem for the Existential Theory of the Reals , 1992, J. Symb. Comput..

[16]  Carlos A. Berenstein,et al.  Residue Currents and Bezout Identities , 1993 .

[17]  Wolmer V. Vasconcelos,et al.  Computational methods in commutative algebra and algebraic geometry , 1997, Algorithms and computation in mathematics.

[18]  임종인,et al.  Gröbner Bases와 응용 , 1995 .

[19]  I. M. Gelʹfand,et al.  Discriminants, Resultants, and Multidimensional Determinants , 1994 .

[20]  P. Aubry,et al.  Ensembles triangulaires de polynomes et resolution de systemes algebriques. Implantation en axiom , 1999 .

[21]  Uwe Storch,et al.  Über Spurfunktionen bei vollständigen Durchschnitten. , 1975 .

[22]  Mohamed Elkadi,et al.  Approche effective des résidus algébriques , 1996 .

[23]  A. Chistov,et al.  Algorithm of polynomial complexity for factoring polynomials and finding the components of varieties in subexponential time , 1986 .

[24]  Marie-Françoise Roy,et al.  Multivariate Bezoutians, Kronecker symbol and Eisenbud-Levine formula , 1996 .

[25]  bitnetJoos Heintz,et al.  La D Etermination Des Points Isol Es Et De La Dimension D'une Vari Et E Alg Ebrique Peut Se Faire En Temps Polynomial , 1991 .

[26]  Alain Yger,et al.  Residue calculus and effective Nullstellensatz , 1999 .