Sea Urchin Spine Calcite Forms via a Transient Amorphous Calcium Carbonate Phase

The skeletons of adult echinoderms comprise large single crystals of calcite with smooth convoluted fenestrated morphologies, raising many questions about how they form. By using water etching, infrared spectroscopy, electron diffraction, and environmental scanning electron microscopy, we show that sea urchin spine regeneration proceeds via the initial deposition of amorphous calcium carbonate. Because most echinoderms produce the same type of skeletal material, they probably all use this same mechanism. Deposition of transient amorphous phases as a strategy for producing single crystals with complex morphology may have interesting implications for the development of sophisticated materials.

[1]  M. Stauber,et al.  On the ultrastructure and the supposed function of the mineralizing matrix coat of sea urchins (Echinodermata, Echinoida) , 1989, Zoomorphology.

[2]  K. Märkel,et al.  The spine tissues in the echinoid Eucidaris tribuloides , 1983, Zoomorphology.

[3]  K. Märkel,et al.  Calcite-resorption in the spine of the echinoid Eucidaris tribuloides , 1983, Zoomorphology.

[4]  Steve Weiner,et al.  Taking Advantage of Disorder: Amorphous Calcium Carbonate and Its Roles in Biomineralization , 2003 .

[5]  S. Weiner,et al.  The Transient Phase of Amorphous Calcium Carbonate in Sea Urchin Larval Spicules: The Involvement of Proteins and Magnesium Ions in Its Formation and Stabilization , 2003 .

[6]  Joanna Aizenberg,et al.  Direct Fabrication of Large Micropatterned Single Crystals , 2003, Science.

[7]  S. Weiner,et al.  Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. , 2002, The Journal of experimental zoology.

[8]  F. Wilt Biomineralization of the Spicules of Sea Urchin Embryos , 2002, Zoological science.

[9]  P. Dubois,et al.  Regeneration of spines and pedicellariae in echinoderms: A review , 2001, Microscopy research and technique.

[10]  S. Weiner,et al.  Cellular control over spicule formation in sea urchin embryos: A structural approach. , 1999, Journal of structural biology.

[11]  Ilhan A. Aksay,et al.  Biomimetic Synthesis of Macroscopic-Scale Calcium Carbonate Thin Films. Evidence for a Multistep Assembly Process , 1998 .

[12]  J. Aizenberg,et al.  Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[13]  L. Brečević,et al.  Solubility of amorphous calcium carbonate , 1989 .

[14]  S. Weiner,et al.  Interactions of sea-urchin skeleton macromolecules with growing calcite crystals— a study of intracrystalline proteins , 1988, Nature.

[15]  B. Heatfield Origin of calcified tissue in regenerating spines of the sea urchin, Strongylocentrotus purpuratus (Stimpson): a quantitative radioautographic study with tritiated thymidine. , 1971, The Journal of experimental zoology.

[16]  J. B. Pilkington The organization of skeletal tissues in the spines of Echinus esculentus , 1969, Journal of the Marine Biological Association of the United Kingdom.

[17]  K. Towe Echinoderm Calcite: Single Crystal or Polycrystalline Aggregate , 1967, Science.

[18]  K. Okazaki SKELETON FORMATION OF SEA URCHIN LARVAE , 1960 .

[19]  D. Raup Crystallography of Echinoid Calcite , 1959, The Journal of Geology.