Pengecilan skala metal–oksida–separa pengalir transistor kesan medan (MOSFET) telah dijalankan sejak sedekad yang lalu untuk meningkatkan fungsi litar dan juga meneruskan hukum Moore (Moore’s Law). Penurunan saiz MOSFET secara berterusan telah mencapai tahap pembatasan saiz dan menghasilkan kesan saluran pendek (SCE), yang mana memberi kesan kepada prestasi MOSFET berskala nano. Beberapa peranti nano–elektronik baru telah dicadangkan dengan harapan mampu mengatasi pembatasan MOSFET ini. Salah satu peranti nanoelektronik baru ialah transistor kesan medan tiub nano karbon (CNFET). Kerja simulasi menggunakan atur cara berteraskan MATLAB ke atas CNFET telah dijalankan dalam kajian ini untuk menyiasat kebergantungan sifat–sifat arus–voltan (I–V) ke atas pelbagai diameter, ketebalan penebat, suhu, kebolehaliran, tunda get dan produk tunda tenaga (EDP) transistor kesan medan tiub nano karbon ini. Keputusan simulasi dibentangkan dan dibandingkan dengan sifat yang dihasilkan oleh MOSFET skala nano. Hasil daripada keputusan simulasi, CNFET dilihat mampu untuk mrnghasilkan prestasi yang lebih baik daripada MOSFET dari segi kebolehan halaju tinggi dan penggunaan kuasa pengsuisan rendah.
Kata kunci: Tiub nano karbon; MOSFET; kepengaliran; produk tunda tenaga
The downscaling of metal–oxide–semiconductor field–effect transistor (MOSFET) has been taking place since decades ago for enhancing circuit functionality and also for extending Moore’s Law. As the downsizing of MOSFET continues, it faces the challenge of size limitation and severe short–channel effects (SCEs) appear to affect the performance of nanoscale–MOSFET. Some novel nanoelectronic devices are proposed, hoping to overcome those MOSFET limitations. One of the novel nanoelectronic devices is carbon nanotube field–effect transistor (CNFET). Simulation work using MATLAB based programming on CNFET is carried out in this paper to investigate the dependence of current–voltage (I–V) characteristics on various carbon nanotube (CNT) diameters, insulator thicknesses and temperatures as well as their transconductances, gate delays and energy delay products (EDPs). The simulation results are presented and then compared with conventional nanoscale–MOSFET. From the simulated results, CNFET seem to provide better performance than MOSFET in term of high speed capability and lower switching power consumption.
Key words: MOSFET; carbon nanotube; energy delay product; nanostructure; field–effect transistor
[1]
Toshinari Ichihashi,et al.
Single-shell carbon nanotubes of 1-nm diameter
,
1993,
Nature.
[2]
Mark S. Lundstrom,et al.
Theory of ballistic nanotransistors
,
2003
.
[3]
M. Dresselhaus,et al.
Carbon nanotubes : synthesis, structure, properties, and applications
,
2001
.
[4]
P. McEuen,et al.
Single-walled carbon nanotube electronics
,
2002
.
[5]
R. Chau.
Benchmarking nanotechnology for high-performance and low-power logic transistor applications
,
2004
.
[6]
Christian Glattli,et al.
Single-electron transistors
,
1998
.
[7]
S. Tans,et al.
Room-temperature transistor based on a single carbon nanotube
,
1998,
Nature.
[8]
Hideki Hasegawa,et al.
Hexagonal Binary Decision Diagram Quantum Circuit Approach for Ultra-Low Power III-V Quantum LSIs
,
2004
.
[9]
M. S. de Vries,et al.
Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls
,
1993,
Nature.
[10]
Christian Schönenberger,et al.
Physical Properties of Multi-wall Nanotubes
,
2001
.
[11]
H. Dai,et al.
High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates.
,
2002,
Nature materials.
[12]
M. Dresselhaus.
Carbon nanotubes
,
1995
.
[13]
James C. Ellenbogen,et al.
A Brief Overview of Nanoelectronic Devices
,
1998
.
[14]
Mark S. Lundstrom,et al.
High-κ dielectrics for advanced carbon-nanotube transistors and logic gates
,
2002
.