Phosphopeptide quantitation using amine-reactive isobaric tagging reagents and tandem mass spectrometry: application to proteins isolated by gel electrophoresis.

Polyacrylamide gel electrophoresis is widely used for protein separation and it is frequently the final step in protein purification in biochemistry and proteomics. Using a commercially available amine-reactive isobaric tagging reagent (iTRAQ) and mass spectrometry we obtained reproducible, quantitative data from peptides derived by tryptic in-gel digestion of proteins and phosphoproteins. The protocol combines optimized reaction conditions, miniaturized peptide handling techniques and tandem mass spectrometry to quantify low- to sub-picomole amounts of (phospho)proteins that were isolated by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). Immobilized metal affinity chromatography (FeIII-IMAC) was efficient for removal of excess reagents and for enrichment of derivatized phosphopeptides prior to matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) analysis. Phosphopeptide abundance was determined by liquid chromatography/tandem mass (LC/MS/MS) using either MALDI time-of-flight/time-of-flight (TOF/TOF) MS/MS or electrospray ionization quadrupole time-of-flight (ESI-QTOF) MS/MS instruments. Chemically labeled isobaric phosphopeptides, differing only by the position of the phosphate group, were distinguished and characterized by LC/MS/MS based on their LC elution profile and distinct MS/MS spectra. We expect this quantitative mass spectrometry method to be suitable for systematic, comparative analysis of molecular variants of proteins isolated by gel electrophoresis.

[1]  M. Mann,et al.  Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. , 2003, Analytical chemistry.

[2]  V. Neuhoff,et al.  Improved staining of proteins in polyacrylamide gels including isoelectric focusing gels with clear background at nanogram sensitivity using Coomassie Brilliant Blue G‐250 and R‐250 , 1988, Electrophoresis.

[3]  A. Shevchenko,et al.  Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. , 1996, Analytical chemistry.

[4]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[5]  J. Lill,et al.  Proteomic tools for quantitation by mass spectrometry. , 2003, Mass spectrometry reviews.

[6]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[7]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[8]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[9]  D. Lauffenburger,et al.  Time-resolved Mass Spectrometry of Tyrosine Phosphorylation Sites in the Epidermal Growth Factor Receptor Signaling Network Reveals Dynamic Modules*S , 2005, Molecular & Cellular Proteomics.

[10]  L. Silengo,et al.  Systematic Analysis of the Epidermal Growth Factor Receptor by Mass Spectrometry Reveals Stimulation-dependent Multisite Phosphorylation*S , 2005, Molecular & Cellular Proteomics.

[11]  M. Mann,et al.  Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway*S , 2005, Molecular & Cellular Proteomics.

[12]  E. Nordhoff,et al.  Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. , 1999, Journal of mass spectrometry : JMS.

[13]  A. Stensballe,et al.  Phosphoric acid enhances the performance of Fe(III) affinity chromatography and matrix-assisted laser desorption/ionization tandem mass spectrometry for recovery, detection and sequencing of phosphopeptides. , 2004, Rapid communications in mass spectrometry : RCM.

[14]  A. Stensballe,et al.  Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off‐line mass spectrometry analysis , 2001, Proteomics.

[15]  R. Aebersold,et al.  Advances in quantitative proteomics via stable isotope tagging and mass spectrometry. , 2003, Current opinion in biotechnology.

[16]  Richard D. Smith,et al.  Stable isotope-coded proteomic mass spectrometry. , 2003, Current opinion in biotechnology.

[17]  W. Vach,et al.  Serum protein profiling by miniaturized solid-phase extraction and matrix-assisted laser desorption/ionization mass spectrometry. , 2005, Rapid communications in mass spectrometry : RCM.