Bayesian networks classifiers for gene-expression data

In this work, we study the application of Bayesian networks classifiers for gene expression data in three ways: first, we made an exhaustive state-of-art of Bayesian classifiers and Bayesian classifiers induced from microarray data. Second, we propose a preprocessing scheme for gene expression data, to induce Bayesian classifiers. Third, we evaluate different Bayesian classifiers for this kind of data, including the C-RPDAG classifier presented by the authors.

[1]  Tao Wang,et al.  Disease gene explorer: display disease gene dependency by combining Bayesian networks with clustering , 2004 .

[2]  Pat Langley,et al.  Induction of Selective Bayesian Classifiers , 1994, UAI.

[3]  T. Poggio,et al.  Prediction of central nervous system embryonal tumour outcome based on gene expression , 2002, Nature.

[4]  A. Osareh,et al.  Classification and Diagnostic Prediction of Cancers Using Gene Microarray Data Analysis , 2009 .

[5]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[6]  Igor Kononenko,et al.  Semi-Naive Bayesian Classifier , 1991, EWSL.

[7]  Aiko M. Hormann,et al.  Programs for Machine Learning. Part I , 1962, Inf. Control..

[8]  Pedro Larrañaga,et al.  Filter versus wrapper gene selection approaches in DNA microarray domains , 2004, Artif. Intell. Medicine.

[9]  Marco Ramoni,et al.  Transcriptional network classifiers , 2009, BMC Bioinformatics.

[10]  Peng Zhou,et al.  A sequential feature extraction approach for naïve bayes classification of microarray data , 2009, Expert Syst. Appl..

[11]  Michael J. Pazzani,et al.  Searching for Dependencies in Bayesian Classifiers , 1995, AISTATS.

[12]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[13]  Bart De Moor,et al.  Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks , 2006, ISMB.

[14]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[15]  Pedro Larrañaga,et al.  Bayesian Classifiers with Consensus Gene Selection: A Case Study in the Systemic Lupus Erythematosus , 2008 .

[16]  Byoung-Tak Zhang,et al.  Applying Machine Learning Techniques to Analysis of Gene Expression Data: Cancer Diagnosis , 2002 .

[17]  Keki B. Irani,et al.  Multi-interval discretization of continuos attributes as pre-processing for classi cation learning , 1993, IJCAI 1993.

[18]  Luis M. de Campos,et al.  Learning Bayesian Network Classifiers: Searching in a Space of Partially Directed Acyclic Graphs , 2005, Machine Learning.

[19]  Richard Scheines,et al.  Constructing Bayesian Network Models of Gene Expression Networks from Microarray Data , 2000 .

[20]  Andrés Ramón Masegosa Arredondo Models of supervised classification. Applications to genomics and information retrieval , 2009 .

[21]  Nir Friedman,et al.  Scoring Genes for Relevance , 2000 .

[22]  Huiqing Liu,et al.  Mean-entropy discretized features are effective for classifying high-dimensional biomedical data , 2003, BIOKDD.

[23]  Andrés R. Masegosa,et al.  Selective Gaussian Naïve Bayes Model for Diffuse Large-B-Cell Lymphoma Classification: Some Improvements in Preprocessing and Variable Elimination , 2005, ECSQARU.

[24]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[25]  Russell Greiner,et al.  Learning Bayesian Belief Network Classifiers: Algorithms and System , 2001, Canadian Conference on AI.

[26]  Elvira: An Environment for Creating and Using Probabilistic Graphical Models , 2002, Probabilistic Graphical Models.

[27]  Ernst Wit,et al.  Statistics for microarrays , 2004 .

[28]  Andrés R. Masegosa,et al.  Methods to Determine the Branching Attribute in Bayesian Multinets Classifiers , 2005, ECSQARU.

[29]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[30]  Bart De Moor,et al.  Integration of Microarray and Textual Data Improves the Prognosis Prediction of Breast, Lung, and Ovarian Cancer Patients , 2007, Pacific Symposium on Biocomputing.

[31]  Byoung-Tak Zhang,et al.  Bayesian model averaging of Bayesian network classifiers over multiple node-orders: application to sparse datasets , 2005, IEEE Trans. Syst. Man Cybern. Part B.

[32]  L. A. Smith,et al.  Feature Subset Selection: A Correlation Based Filter Approach , 1997, ICONIP.

[33]  Pedro Larrañaga Múgica,et al.  Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers , 2008 .

[34]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[35]  Nir Friedman,et al.  Class discovery in gene expression data , 2001, RECOMB.

[36]  David Page,et al.  A Probabilistic Learning Approach to Whole-Genome Operon Prediction , 2000, ISMB.

[37]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Byoung-Tak Zhang,et al.  Analysis of Gene Expression Profiles and Drug Activity Patterns by Clustering and Bayesian Network Learning , 2002 .

[39]  Byoung-Tak Zhang,et al.  Bayesian Network Classifiers for Gene Expression Analysis , 2003 .

[40]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[41]  Yudong D. He,et al.  Gene expression profiling predicts clinical outcome of breast cancer , 2002, Nature.

[42]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[43]  K. Sachs,et al.  Causal Protein-Signaling Networks Derived from Multiparameter Single-Cell Data , 2005, Science.

[44]  Mehran Sahami,et al.  Learning Limited Dependence Bayesian Classifiers , 1996, KDD.

[45]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[46]  Xiaohui Liu,et al.  Bayesian Network Classifiers for Time-Series Microarray Data , 2005, IDA.

[47]  Michael L. Bittner,et al.  Context-Specific Gene Regulations in Cancer Gene Expression Data , 2009, Pacific Symposium on Biocomputing.

[48]  I. Mian,et al.  Analysis of molecular profile data using generative and discriminative methods. , 2000, Physiological genomics.

[49]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[50]  David Page,et al.  A Bayesian Network Approach to Operon Prediction , 2003, Bioinform..

[51]  M. Friedman The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance , 1937 .

[52]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[53]  Joachim Selbig,et al.  pcaMethods - a bioconductor package providing PCA methods for incomplete data , 2007, Bioinform..

[54]  Blaz Zupan,et al.  Data and text mining Visualization-based cancer microarray data classification analysis , 2007 .

[55]  E. Lander,et al.  MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia , 2002, Nature Genetics.

[56]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[57]  Ron Kohavi,et al.  Irrelevant Features and the Subset Selection Problem , 1994, ICML.

[58]  Rosa Blanco Gómez Learning Bayesian networks form data with factorisation and classification purposes. Applications in biomedicine , 2005 .

[59]  Iñaki Inza,et al.  Gene selection by sequential search wrapper approaches in microarray cancer class prediction , 2002, J. Intell. Fuzzy Syst..

[60]  D. di Bernardo,et al.  How to infer gene networks from expression profiles , 2007, Molecular systems biology.

[61]  Nicoletta Dessì,et al.  Learning Bayesian Classifiers from Gene-Expression MicroArray Data , 2005, WILF.

[62]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[63]  Pat Langley,et al.  An Analysis of Bayesian Classifiers , 1992, AAAI.