The Evolving Contribution of Mass Spectrometry to Integrative Structural Biology

[1]  Ruedi Aebersold,et al.  A mass spectrometry– based hybrid method for structural modeling of protein complexes , 2018 .

[2]  R. Aebersold,et al.  Crosslinking and Mass Spectrometry: An Integrated Technology to Understand the Structure and Function of Molecular Machines. , 2016, Trends in biochemical sciences.

[3]  Lan Huang,et al.  Gln40 deamidation blocks structural reconfiguration and activation of SCF ubiquitin ligase complex by Nedd8 , 2015, Nature Communications.

[4]  Albert J R Heck,et al.  Proteome-wide profiling of protein assemblies by cross-linking mass spectrometry , 2015, Nature Methods.

[5]  Lars Malmström,et al.  xTract: software for characterizing conformational changes of protein complexes by quantitative cross-linking mass spectrometry , 2015, Nature Methods.

[6]  Qing Jun Wang,et al.  A strategy for dissecting the architectures of native macromolecular assemblies , 2015, Nature Methods.

[7]  Esther Willems,et al.  Cross-linking immunoprecipitation-MS (xIP-MS): Topological Analysis of Chromatin-associated Protein Complexes Using Single Affinity Purification* , 2015, Molecular & Cellular Proteomics.

[8]  S. Cianférani,et al.  Towards integrative structural mass spectrometry: Benefits from hybrid approaches. , 2015, Methods.

[9]  Marco Y. Hein,et al.  A Human Interactome in Three Quantitative Dimensions Organized by Stoichiometries and Abundances , 2015, Cell.

[10]  Juri Rappsilber,et al.  A Single α Helix Drives Extensive Remodeling of the Proteasome Lid and Completion of Regulatory Particle Assembly , 2015, Cell.

[11]  Charles H. Greenberg,et al.  Molecular architecture of the yeast Mediator complex , 2015, eLife.

[12]  P. Bork,et al.  In situ structural analysis of the human nuclear pore complex , 2015, Nature.

[13]  Charles H. Greenberg,et al.  Architecture of the Human and Yeast General Transcription and DNA Repair Factor TFIIH. , 2015, Molecular cell.

[14]  Michal Sharon,et al.  Chemical cross‐linking and native mass spectrometry: A fruitful combination for structural biology , 2015, Protein science : a publication of the Protein Society.

[15]  Edward L. Huttlin,et al.  The BioPlex Network: A Systematic Exploration of the Human Interactome , 2015, Cell.

[16]  S. Teichmann,et al.  Structure, dynamics, assembly, and evolution of protein complexes. , 2015, Annual review of biochemistry.

[17]  Ruedi Aebersold,et al.  The complete structure of the 55S mammalian mitochondrial ribosome , 2015, Science.

[18]  A. Hoelz,et al.  Architecture of the nuclear pore complex coat , 2015, Science.

[19]  E. Nogales The development of cryo-EM into a mainstream structural biology technique , 2015, Nature Methods.

[20]  C. Borchers,et al.  DXMSMS Match Program for Automated Analysis of LC‐MS/MS Data Obtained Using Isotopically Coded CID‐Cleavable Cross‐Linking Reagents , 2014, Current protocols in bioinformatics.

[21]  A. Sinz The advancement of chemical cross-linking and mass spectrometry for structural proteomics: from single proteins to protein interaction networks , 2014, Expert review of proteomics.

[22]  R. Aebersold,et al.  Molecular Architecture of the 40S⋅eIF1⋅eIF3 Translation Initiation Complex , 2014, Cell.

[23]  Seung Joong Kim,et al.  Structural Characterization by Cross-linking Reveals the Detailed Architecture of a Coatomer-related Heptameric Module from the Nuclear Pore Complex* , 2014, Molecular & Cellular Proteomics.

[24]  Seung Joong Kim,et al.  Molecular Architecture and Function of the SEA Complex, a Modulator of the TORC1 Pathway* , 2014, Molecular & Cellular Proteomics.

[25]  W. Kühlbrandt The Resolution Revolution , 2014, Science.

[26]  Ruedi Aebersold,et al.  A mass spectrometry-based hybrid method for structural modelling of protein complexes , 2014, Nature Methods.

[27]  Alexandre M. J. J. Bonvin,et al.  Insight into cyanobacterial circadian timing from structural details of the KaiB–KaiC interaction , 2014, Proceedings of the National Academy of Sciences.

[28]  Michael Götze,et al.  Automated Assignment of MS/MS Cleavable Cross-Links in Protein 3D-Structure Analysis , 2014, Journal of The American Society for Mass Spectrometry.

[29]  Pierre Legrand,et al.  Crystal structure of the 14-subunit RNA polymerase I , 2013, Nature.

[30]  Lars Malmström,et al.  Cross-Link Guided Molecular Modeling with ROSETTA , 2013, PloS one.

[31]  Carol V. Robinson,et al.  Comparative cross-linking and mass spectrometry of an intact F-type ATPase suggest a role for phosphorylation , 2013, Nature Communications.

[32]  Alexandre M J J Bonvin,et al.  Advances in integrative modeling of biomolecular complexes. , 2013, Methods.

[33]  Li Yang,et al.  In vivo protein interaction network identified with a novel real-time cross-linked peptide identification strategy. , 2013, Journal of proteome research.

[34]  Andrej Sali,et al.  Integrative Structural Biology , 2013, Science.

[35]  R. Aebersold,et al.  Structural Probing of a Protein Phosphatase 2A Network by Chemical Cross-Linking and Mass Spectrometry , 2012, Science.

[36]  Friedrich Förster,et al.  False discovery rate estimation for cross-linked peptides identified by mass spectrometry , 2012, Nature Methods.

[37]  M. Dong,et al.  Identification of cross-linked peptides from complex samples , 2012, Nature Methods.

[38]  R. Aebersold,et al.  Molecular architecture of the 26S proteasome holocomplex determined by an integrative approach , 2012, Proceedings of the National Academy of Sciences.

[39]  Ben M. Webb,et al.  Putting the Pieces Together: Integrative Modeling Platform Software for Structure Determination of Macromolecular Assemblies , 2012, PLoS biology.

[40]  Gabriel C. Lander,et al.  Complete subunit architecture of the proteasome regulatory particle , 2011, Nature.

[41]  R. Aebersold,et al.  Joining Forces: Integrating Proteomics and Cross-linking with the Mass Spectrometry of Intact Complexes* , 2011, Molecular & Cellular Proteomics.

[42]  Edward P. Morris,et al.  Structural basis for the subunit assembly of the anaphase-promoting complex , 2011, Nature.

[43]  Michael Götze,et al.  StavroX—A Software for Analyzing Crosslinked Products in Protein Interaction Studies , 2011, Journal of The American Society for Mass Spectrometry.

[44]  H. Wolfson,et al.  Determining macromolecular assembly structures by molecular docking and fitting into an electron density map , 2010, Proteins.

[45]  P. Cramer,et al.  Architecture of the RNA polymerase II–TFIIF complex revealed by cross-linking and mass spectrometry , 2010, EMBO Journal.

[46]  G. Kruppa,et al.  Intra-Molecular Cross-Linking of Acidic Residues for Protein Structure Studies , 2008, European journal of mass spectrometry.

[47]  Juri Rappsilber,et al.  Structural Analysis of Multiprotein Complexes by Cross-linking, Mass Spectrometry, and Database Searching*S , 2007, Molecular & Cellular Proteomics.

[48]  B. Chait,et al.  The molecular architecture of the nuclear pore complex , 2007, Nature.

[49]  B. Chait,et al.  Determining the architectures of macromolecular assemblies , 2007, Nature.

[50]  C. Robinson,et al.  Ion mobility-mass spectrometry reveals long-lived, unfolded intermediates in the dissociation of protein complexes. , 2007, Angewandte Chemie.

[51]  C. Robinson,et al.  Protein complexes in the gas phase: technology for structural genomics and proteomics. , 2007, Chemical reviews.

[52]  P. Bork,et al.  Proteome survey reveals modularity of the yeast cell machinery , 2006, Nature.

[53]  Sean R. Collins,et al.  Global landscape of protein complexes in the yeast Saccharomyces cerevisiae , 2006, Nature.

[54]  T. Richmond,et al.  Baculovirus expression system for heterologous multiprotein complexes , 2004, Nature Biotechnology.

[55]  P. Picotti,et al.  Probing protein structure by limited proteolysis. , 2004, Acta biochimica Polonica.

[56]  E. O’Shea,et al.  Global analysis of protein localization in budding yeast , 2003, Nature.

[57]  R. Aebersold,et al.  Mass spectrometry-based proteomics , 2003, Nature.

[58]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[59]  Song Tan,et al.  A histone fold TAF octamer within the yeast TFIID transcriptional coactivator , 2001, Nature Structural Biology.

[60]  B. Chait,et al.  Mass spectrometry as a tool for protein crystallography. , 2001, Annual review of biophysics and biomolecular structure.

[61]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[62]  B. Chait,et al.  The Yeast Nuclear Pore Complex: Composition, Architecture, and Transport Mechanism , 2000 .

[63]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[64]  B. Chait,et al.  Observation of the heme-globin complex in native myoglobin by electrospray-ionization mass spectrometry , 1991 .

[65]  B. Ganem,et al.  Observation of noncovalent enzyme-substrate and enzyme-product complexes by ion-spray mass spectrometry , 1991 .

[66]  B. Ganem,et al.  Detection of noncovalent receptor-ligand complexes by mass spectrometry , 1991 .

[67]  V. Katta,et al.  Conformational changes in proteins probed by hydrogen-exchange electrospray-ionization mass spectrometry. , 1991, Rapid communications in mass spectrometry : RCM.

[68]  J. Tata Nuclear pores , 1975, Nature.