Personalized Thermal Comfort Forecasting for Smart Buildings via Locally Weighted Regression with Adaptive Bandwidth

Irish Research Council for Science, Engineering and Technology (Enterprise Partnership Scheme)

[1]  P. Fanger Moderate Thermal Environments Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort , 1984 .

[2]  Wei Yang,et al.  Thermal comfort in naturally ventilated and air-conditioned buildings in humid subtropical climate zone in China , 2008, International journal of biometeorology.

[3]  P. O. Fanger,et al.  Thermal comfort: analysis and applications in environmental engineering, , 1972 .

[4]  Thananchai Leephakpreeda,et al.  Neural computing thermal comfort index for HVAC systems , 2005 .

[5]  Nathan Mendes,et al.  Predictive controllers for thermal comfort optimization and energy savings , 2008 .

[6]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[7]  K. Yang,et al.  AN APPROACH TO BUILDING ENERGY SAVINGS USING THE PMV INDEX , 1997 .

[8]  Jiong Shu,et al.  Experimental design and the GA-BP prediction of human thermal comfort index , 2011, ICNC.

[9]  L. Berglund,et al.  A standard predictive index of human response to the thermal environment , 1986 .

[10]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[11]  Joseph A. Paradiso,et al.  Personalized HVAC control system , 2010, 2010 Internet of Things (IOT).

[12]  Max H. Sherman,et al.  A simplified model of thermal comfort , 1985 .

[13]  Nic Wilson,et al.  Learning User Preferences to Maximise Occupant Comfort in Office Buildings , 2010, IEA/AIE.

[14]  R. de Dear,et al.  The adaptive model of thermal comfort and energy conservation in the built environment , 2001, International journal of biometeorology.

[15]  S. Ari,et al.  A practical approach to individual thermal comfort and energy optimization problem , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[16]  B W Olesen,et al.  International standards for the indoor environment. , 2004, Indoor air.

[17]  W. Cleveland Robust Locally Weighted Regression and Smoothing Scatterplots , 1979 .

[18]  Clifford C. Federspiel,et al.  User-Adaptable Comfort Control for HVAC Systems , 1992, 1992 American Control Conference.

[19]  J. Busch A tale of two populations: thermal comfort in air-conditioned and naturally ventilated offices in Thailand , 1992 .

[20]  Zul Azhar Zahid Jamal,et al.  Development of a PMV-based thermal comfort modelling , 2007 .

[21]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[22]  Nicolas Morel,et al.  A personalized measure of thermal comfort for building controls , 2011 .

[23]  Gail Brager,et al.  Thermal comfort in naturally ventilated buildings: revisions to ASHRAE Standard 55 , 2002 .

[24]  J. F. Nicol,et al.  The validity of ISO-PMV for predicting comfort votes in every-day thermal environments , 2002 .

[25]  Ardeshir Mahdavi,et al.  Integrating thermal comfort field data analysis in a case-based building simulation environment , 2001 .

[26]  Standard Ashrae Thermal Environmental Conditions for Human Occupancy , 1992 .

[27]  Ma Bingxin,et al.  Experimental design and the GA-BP prediction of human thermal comfort index , 2011, 2011 Seventh International Conference on Natural Computation.