Study and Evaluation of an Incident Detection Algorithm for Urban Freeways

A series of accidents, which are non-recurrent and non-anticipated, are called incidents. These incidents make standard traffic flows interrupt, which result in the decrease of road capacity and a number of social and economic costs, such as the traffic congestion and air pollution. In order to prevent the hazard of incidents, domestic and foreign traffic management center are likely to opt auto-sense system with algorithms of auto-incident sense. However, it is evaluated that the algorithms have a low function with frequent wrong alarms, even if they accurately ry to speculate the incidents. In the case of bottleneck which has lack of road capacity, compared with other roads, due to inefficient road structured over-capacity of the demand of on-off ramp, the incidents regularly take place. Nonetheless, it can be more difficult to speculate the auto-incidents sense owing to similar incidents, such as the queue of in-out flows of cars and the change of road line. Throughout this research, the function of the model has improved excluding near road line in the module of the incidents which is based on the auto-incidents algorithms during the sense of the congestion of ramp areas.