Investigation on statistical characteristics of asphalt concrete dynamic moduli with random aggregate distribution model

Abstract Finite element models generating the random aggregate have been used to predict the dynamic moduli of the asphalt concrete materials. The asphalt concrete is modeled as a triphasic medium composed of granular inclusions with linear elastic properties, interfacial transition zone (ITZ) with linear elastic properties, and a porous matrix of bituminous mastics exhibiting linear viscoelastic behavior at small strain level. The predicted complex moduli of asphalt mixes from numerical approach are found close to that from the dynamic modulus tests, resulting in a good agreement. Meanwhile, the size effort of dynamic modulus for asphalt concrete material is investigated through nearly 30,000 times numerical examples, and a theoretical statistic formula for describing the size effort of dynamic modulus is proposed. The simulation results reveal that the theoretical statistic formula provides a suitable description for the size effort of dynamic modulus for asphalt concrete.

[1]  Herman S. Kaufman,et al.  Introduction to polymer science and technology: An SPE textbook , 1977 .

[2]  Yu Liu,et al.  Viscoelastic Model for Discrete Element Simulation of Asphalt Mixtures , 2009 .

[3]  Piet Stroeven,et al.  A stereological approach to roughness of fracture surfaces and tortuosity of transport paths in concrete , 2000 .

[4]  T. Hughes,et al.  Collocation, dissipation and [overshoot] for time integration schemes in structural dynamics , 1978 .

[5]  Andy Collop,et al.  On the use of discrete element modelling to simulate the viscoelastic deformation behaviour of an idealized asphalt mixture , 2007 .

[6]  Y. Monerie,et al.  Determination of the size of the representative volume element for random quasi-brittle composites , 2009 .

[7]  S. Pirmohammad,et al.  Asphalt concrete resistance against fracture at low temperatures under different modes of loading , 2015 .

[8]  X. Shu Application of Particulate-Filled Composite (PFC) Theory to Hot-Mix Asphalt (HMA) Mixtures , 2007 .

[9]  William G. Buttlar,et al.  Low Temperature Cracking Prediction with Consideration of Temperature Dependent Bulk and Fracture Properties , 2010 .

[10]  William G. Buttlar,et al.  Micromechanical Modeling Approach to Predict Compressive Dynamic Moduli of Asphalt Mixtures Using the Distinct Element Method , 2006 .

[11]  Valeria Vignali,et al.  Rheological and 3D DEM characterization of potential rutting of cold bituminous mastics , 2014 .

[12]  Wenchao Song,et al.  Steady-state dynamic method: An efficient and effective way to predict dynamic modulus of asphalt concrete , 2016 .

[13]  Weiqiu Chen,et al.  Modeling of multi-inclusion composites with interfacial imperfections: Micromechanical and numerical simulations , 2010 .

[14]  Xinhua Yang,et al.  Multiscale fracture simulation of three-point bending asphalt mixture beam considering material heterogeneity , 2011 .

[15]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[16]  William G. Buttlar,et al.  Understanding Asphalt Mastic Behavior Through Micromechanics , 1999 .

[17]  Xinfei Wang,et al.  Micromechanical creep models for asphalt-based multi-phase particle-reinforced composites with viscoelastic imperfect interface , 2014 .

[18]  R. Sullivan Development of a viscoelastic continuum damage model for cyclic loading , 2008 .

[19]  Xingyi Zhu,et al.  Numerical prediction of elastic modulus of asphalt concrete with imperfect bonding , 2012 .

[20]  John B. Metcalf,et al.  Two-Step Approach to Prediction of Asphalt Concrete Modulus from Two-Phase Micromechanical Models , 2005 .

[21]  Su-Seng Pang,et al.  Elastic Modulus Prediction of Asphalt Concrete , 1999 .

[22]  Changjun Zhou,et al.  Prediction on dynamic modulus of asphalt concrete with random aggregate modeling methods and virtual physics engine , 2016 .

[23]  S. M. Abtahi,et al.  Fiber-reinforced asphalt-concrete – A review , 2010 .

[24]  L. Anand,et al.  Finite deformation constitutive equations and a time integrated procedure for isotropic hyperelastic—viscoplastic solids , 1990 .

[25]  Hussain U Bahia,et al.  NON-LINEAR VISCOELASTIC AND FATIGUE PROPERTIES OF ASPHALT BINDERS , 1999 .

[26]  Shaopeng Wu,et al.  2D and 3D meso-scale finite element models for ravelling analysis of porous asphalt concrete , 2008 .

[27]  Y. Kim,et al.  CONTINUUM DAMAGE MECHANICS-BASED FATIGUE MODEL OF ASPHALT CONCRETE , 2000 .

[28]  Piet Stroeven,et al.  Stochastic heterogeneity as fundamental basis for the design and evaluation of experiments , 2008 .

[29]  William G. Buttlar,et al.  Discrete Element Modeling to Predict the Modulus of Asphalt Concrete Mixtures , 2004 .

[30]  William G. Buttlar,et al.  Discrete Element Modeling of Asphalt Concrete: Microfabric Approach , 2001 .

[31]  Gang Lin,et al.  Numerical modeling for predicting service life of reinforced concrete structures exposed to chloride environments , 2010 .

[32]  Xiang Shu,et al.  Micromechanics-based dynamic modulus prediction of polymeric asphalt concrete mixtures , 2008 .

[33]  C. Petit,et al.  Heterogeneous numerical modeling of asphalt concrete through use of a biphasic approach: Porous matrix/inclusions , 2013 .

[34]  R. Roque,et al.  EVALUATION OF EMPIRICAL AND THEORETICAL MODELS TO DETERMINE ASPHALT MIXTURE STIFFNESSES AT LOW TEMPERATURES (WITH DISCUSSION) , 1996 .

[35]  D. Little,et al.  ONE-DIMENSIONAL CONSTITUTIVE MODELING OF ASPHALT CONCRETE , 1990 .

[36]  Dallas N. Little,et al.  Linear Viscoelastic Analysis of Asphalt Mastics , 2004 .

[37]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[38]  T S Shuler,et al.  Polymer-Modified Asphalt Properties Related to Asphalt Concrete Performance , 1987 .

[39]  D. Little,et al.  Fatigue characterization of asphalt concrete using viscoelasticity and continuum damage theory , 1997 .

[40]  J. Ferry Viscoelastic properties of polymers , 1961 .

[41]  C. Lantuéjoul,et al.  Ergodicity and integral range , 1991 .

[42]  Martin Ostoja-Starzewski,et al.  Random field models of heterogeneous materials , 1998 .

[43]  Karam Sab,et al.  A probabilistic mechanical model for prediction of aggregates’ size distribution effect on concrete compressive strength , 2012 .