Deep Bayesian Inversion

Characterizing statistical properties of solutions of inverse problems is essential for decision making. Bayesian inversion offers a tractable framework for this purpose, but current approaches are ...

[1]  Jan Sijbers,et al.  Fast and flexible X-ray tomography using the ASTRA toolbox. , 2016, Optics express.

[2]  S. Siltanen,et al.  Can one use total variation prior for edge-preserving Bayesian inversion? , 2004 .

[3]  Xin Guo,et al.  On the optimality of conditional expectation as a Bregman predictor , 2005, IEEE Trans. Inf. Theory.

[4]  Jonas Adler,et al.  Solving ill-posed inverse problems using iterative deep neural networks , 2017, ArXiv.

[5]  Claas Bontus,et al.  Reconstruction Algorithms for Computed Tomography , 2009 .

[6]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[7]  Carola-Bibiane Schönlieb,et al.  Task adapted reconstruction for inverse problems , 2018, Inverse Problems.

[8]  Thomas B. Schön,et al.  Probabilistic approach to limited-data computed tomography reconstruction , 2018, Inverse Problems.

[9]  Max A. Viergever,et al.  Generative Adversarial Networks for Noise Reduction in Low-Dose CT , 2017, IEEE Transactions on Medical Imaging.

[10]  Guo-Jun Qi,et al.  Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities , 2017, International Journal of Computer Vision.

[11]  Paul Babyn,et al.  Sharpness-Aware Low-Dose CT Denoising Using Conditional Generative Adversarial Network , 2017, Journal of Digital Imaging.

[12]  Wojciech Zaremba,et al.  Improved Techniques for Training GANs , 2016, NIPS.

[13]  G. Peyré,et al.  Unbalanced Optimal Transport: Geometry and Kantorovich Formulation , 2015 .

[14]  Jonas Adler,et al.  Banach Wasserstein GAN , 2018, NeurIPS.

[15]  Léon Bottou,et al.  Wasserstein GAN , 2017, ArXiv.

[16]  Michael Unser,et al.  Deep Convolutional Neural Network for Inverse Problems in Imaging , 2016, IEEE Transactions on Image Processing.

[17]  Li Fei-Fei,et al.  Perceptual Losses for Real-Time Style Transfer and Super-Resolution , 2016, ECCV.

[18]  A. Stuart,et al.  The Bayesian Approach to Inverse Problems , 2013, 1302.6989.

[19]  Eric P. Xing,et al.  Structured Generative Adversarial Networks , 2017, NIPS.

[20]  M. Burger,et al.  Maximum a posteriori estimates in linear inverse problems with log-concave priors are proper Bayes estimators , 2014, 1402.5297.

[21]  Marcelo Pereyra,et al.  Maximum-a-Posteriori Estimation with Bayesian Confidence Regions , 2016, SIAM J. Imaging Sci..

[22]  Jian Sun,et al.  Deep ADMM-Net for Compressive Sensing MRI , 2016, NIPS.

[23]  Alexander J. Smola,et al.  Deep Sets , 2017, 1703.06114.

[24]  Mark A. Girolami,et al.  Geometry and Dynamics for Markov Chain Monte Carlo , 2017, ArXiv.

[25]  Hu Chen,et al.  LEARN: Learned Experts’ Assessment-Based Reconstruction Network for Sparse-Data CT , 2017, IEEE Transactions on Medical Imaging.

[26]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Quoc V. Le,et al.  Neural Optimizer Search with Reinforcement Learning , 2017, ICML.

[28]  Matti Lassas. Eero Saksman,et al.  Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.

[29]  S. J. Hamilton,et al.  Deep D-Bar: Real-Time Electrical Impedance Tomography Imaging With Deep Neural Networks , 2017, IEEE Transactions on Medical Imaging.

[30]  Klaus H. Maier-Hein,et al.  A Probabilistic U-Net for Segmentation of Ambiguous Images , 2018, NeurIPS.

[31]  Jong Chul Ye,et al.  A deep convolutional neural network using directional wavelets for low‐dose X‐ray CT reconstruction , 2016, Medical physics.

[32]  K. Stierstorfer,et al.  Image reconstruction and image quality evaluation for a 64-slice CT scanner with z-flying focal spot. , 2005, Medical physics.

[33]  C. Villani Optimal Transport: Old and New , 2008 .

[34]  C. McCollough TU-FG-207A-04: Overview of the Low Dose CT Grand Challenge. , 2016, Medical physics.

[35]  Audrey Repetti,et al.  Scalable Bayesian Uncertainty Quantification in Imaging Inverse Problems via Convex Optimization , 2018, SIAM J. Imaging Sci..

[36]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[37]  Johan Karlsson,et al.  Learning to solve inverse problems using Wasserstein loss , 2017, ArXiv.

[38]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[39]  P. Stark Inverse problems as statistics , 2002 .

[40]  Guang Yang,et al.  DAGAN: Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing MRI Reconstruction , 2018, IEEE Transactions on Medical Imaging.

[41]  Aad van der Vaart,et al.  Fundamentals of Nonparametric Bayesian Inference , 2017 .

[42]  Bo V. Pedersen,et al.  Approximating conditional distributions by the mixed Edgeworth-saddlepoint expansion , 1979 .

[43]  Song Han,et al.  Deep Generative Adversarial Networks for Compressed Sensing Automates MRI , 2017, ArXiv.

[44]  Thomas Pock,et al.  Learning a variational network for reconstruction of accelerated MRI data , 2017, Magnetic resonance in medicine.

[45]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[46]  Yee Whye Teh,et al.  Conditional Neural Processes , 2018, ICML.

[47]  Yee Whye Teh,et al.  Neural Processes , 2018, ArXiv.

[48]  Eric P. Xing,et al.  Toward Controlled Generation of Text , 2017, ICML.

[49]  Aaron C. Courville,et al.  Improved Training of Wasserstein GANs , 2017, NIPS.

[50]  Yi Zhang,et al.  Do GANs learn the distribution? Some Theory and Empirics , 2018, ICLR.

[51]  S. Janson,et al.  Higher moments of Banach space valued random variables , 2012, 1208.4272.

[52]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[53]  Jonas Adler,et al.  Learned Primal-Dual Reconstruction , 2017, IEEE Transactions on Medical Imaging.

[54]  Yoshua Bengio,et al.  Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[57]  Daniel Rueckert,et al.  Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[58]  Dustin Tran,et al.  Image Transformer , 2018, ICML.

[59]  Simon Osindero,et al.  Conditional Generative Adversarial Nets , 2014, ArXiv.

[60]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[61]  Andreas Hauptmann,et al.  Model-Based Learning for Accelerated, Limited-View 3-D Photoacoustic Tomography , 2017, IEEE Transactions on Medical Imaging.

[62]  Jaakko Lehtinen,et al.  Progressive Growing of GANs for Improved Quality, Stability, and Variation , 2017, ICLR.

[63]  Daniela Calvetti,et al.  Inverse problems: From regularization to Bayesian inference , 2018 .

[64]  R. Nickl ON BAYESIAN INFERENCE FOR SOME STATISTICAL INVERSE PROBLEMS WITH PARTIAL DIFFERENTIAL EQUATIONS , 2017 .

[65]  E. Somersalo,et al.  Statistical and computational inverse problems , 2004 .