Similitude between 3D cellular patterns in transonic buffet and subsonic stall

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Similitude between 3D cellular patterns in transonic buffet and subsonic stall Frédéric Plante, Julien Dandois, Éric Laurendeau

[1]  S. Timme,et al.  PASSIVE CONTROL OF TRANSONIC BUFFET ONSET ON A HALF WING–BODY CONFIGURATION , 2015 .

[2]  Y. Ohmichi,et al.  Modal Decomposition Analysis of Three-Dimensional Transonic Buffet Phenomenon on a Swept Wing , 2018, AIAA Journal.

[3]  J. Edwards Transonic shock oscillations calculated with a new interactive boundary layer coupling method , 1993 .

[4]  Andrey Garbaruk,et al.  Origin of transonic buffet on aerofoils , 2007, Journal of Fluid Mechanics.

[5]  S. Timme,et al.  Reynolds-Averaged Navier-Stokes Simulations of Shock Buffet on Half Wing-Body Configuration , 2015 .

[6]  S. Timme,et al.  Mach number effects on buffeting flow on a half wing-body configuration , 2016 .

[7]  Eric Garnier,et al.  Large-Eddy Simulation of Transonic Buffet over a Supercritical Airfoil , 2004 .

[8]  Joseph Katz,et al.  Study of the Unsteady Flow Features on a Stalled Wing , 1998 .

[9]  A. Mosahebi,et al.  Extension of a Two-Dimensional Navier–Stokes Solver for Infinite Swept Flow , 2017 .

[10]  Alan J. Wadcock,et al.  Flying-Hot-wire Study of Flow Past an NACA 4412 Airfoil at Maximum Lift , 1979 .

[11]  J. Katz,et al.  Cellular patterns in poststall flow over unswept wings , 1983 .

[12]  Y. Elimelech,et al.  The three-dimensional transition stages over the NACA-0009 airfoil at Reynolds numbers of several ten thousand , 2012 .

[13]  P. Spalart Prediction of Lift Cells for Stalling Wings by Lifting-Line Theory , 2014 .

[14]  Eric Laurendeau,et al.  Acceleration of Euler and RANS solvers via Selective Frequency Damping , 2018 .

[15]  Sébastien Deck,et al.  Zonal-Detached Eddy Simulation of Transonic Buffet on a Civil Aircraft Type Configuration , 2008 .

[16]  Yannick Hoarau,et al.  Prediction of Transonic Buffet by Delayed Detached-Eddy Simulation , 2014 .

[17]  F. Rasmussen,et al.  New Insight Into the Flow Around a Wind Turbine Airfoil Section , 2005 .

[18]  Spencer J. Sherwin,et al.  Encapsulated formulation of the selective frequency damping method , 2013, 1311.7000.

[19]  S. Deck Recent improvements in the Zonal Detached Eddy Simulation (ZDES) formulation , 2012 .

[20]  S. Crow Stability theory for a pair of trailing vortices , 1970 .

[21]  J. Dandois Experimental study of transonic buffet phenomenon on a 3D swept wing , 2016 .

[22]  Sébastien Deck,et al.  Zonal-detached-eddy simulation of the flow around a high-lift configuration , 2005 .

[23]  Eric Coustols,et al.  NUMERICAL PREDICTION OF SHOCK INDUCED OSCILLATIONS OVER A 2D AIRFOIL: INFLUENCE OF TURBULENCE MODELLING AND TEST SECTION WALLS , 2006, Proceeding of Fourth International Symposium on Turbulence and Shear Flow Phenomena.

[24]  S. Deck Numerical Simulation of Transonic Buffet over a Supercritical Airfoil , 2005 .

[25]  E. Laurendeau,et al.  Nonlinear Generalized Lifting-Line Coupling Algorithms for Pre/Poststall Flows , 2015 .

[26]  Atsushi Hashimoto,et al.  Numerical Investigation of Transonic Buffet on a Three-Dimensional Wing using Incremental Mode Decomposition , 2017 .

[27]  S. Timme,et al.  Delayed Detached–Eddy Simulation of Shock Buffet on Half Wing–Body Configuration , 2015 .

[28]  E. Goncalvès,et al.  Turbulence model and numerical scheme assessment for buffet computations , 2004 .

[29]  Gareth A. Vio,et al.  A review of recent developments in the understanding of transonic shock buffet , 2017 .

[30]  D. Soulevant,et al.  Experimental Study of Shock Oscillation over a Transonic Supercritical Profile , 2009 .

[31]  S. Voutsinas,et al.  Experimental and computational analysis of stall cells on rectangular wings , 2014 .

[32]  B. Benoit,et al.  Buffeting Prediction for Transport Aircraft Applications Based on Unsteady Pressure Measurements , 1987 .

[33]  M. Amitay,et al.  Parametric Investigation of Stall Cell Formation on a NACA 0015 Airfoil , 2018, AIAA Journal.

[34]  A. Gross,et al.  Criterion for Spanwise Spacing of Stall Cells , 2015 .

[35]  Daniella E. Raveh,et al.  Efficient infinite–swept wing solver for steady and unsteady compressible flows , 2018 .

[36]  D. Magidov,et al.  Predicting the onset of flow unsteadiness based on global instability , 2007, J. Comput. Phys..

[37]  V. Brion,et al.  Experimental analysis of the shock dynamics on a transonic laminar airfoil , 2017 .

[38]  Venkat Venkatakrishnan,et al.  Numerical Evidence of Multiple Solutions for the Reynolds-Averaged Navier–Stokes Equations , 2014 .

[39]  Atsushi Hashimoto,et al.  Transonic Buffet Simulation over NASA-CRM by Unsteady-FaSTAR Code , 2017 .

[40]  Soshi Kawai,et al.  Wall-Modeled Large-Eddy Simulation of Transonic Airfoil Buffet at High Reynolds Number , 2016, AIAA Journal.

[41]  Günter Schewe,et al.  Reynolds-number effects in flow around more-or-less bluff bodies , 2001 .

[42]  J. B. Mcdevitt,et al.  Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility , 1985 .

[43]  Daniella E. Raveh,et al.  Numerical Study of Shock Buffet on Three-Dimensional Wings , 2015 .

[44]  S. Sherwin,et al.  An adaptive selective frequency damping method , 2014, 1412.4372.

[45]  J. Barlow,et al.  Flowfield Model for a Rectangular Planform Wing beyond Stall , 1980 .

[46]  F. W. Roos,et al.  The buffeting pressure field of a high-aspect-ratio swept wing , 1985 .

[47]  D. Rodríguez,et al.  On the birth of stall cells on airfoils , 2011 .

[48]  F. Richez,et al.  Selective frequency damping method for steady RANS solutions of turbulent separated flows around an airfoil at stall , 2016 .

[49]  Frédéric Plante,et al.  Study of Three-Dimensional Transonic Buffet on Swept Wings , 2017 .

[50]  Andy P. Broeren,et al.  Spanwise Variation in the Unsteady Stalling Flowfields of Two-Dimensional Airfoil Models , 2001 .

[51]  Ashok Gopalarathnam,et al.  Iteration schemes for rapid post‐stall aerodynamic prediction of wings using a decambering approach , 2014 .

[52]  S. Voutsinas,et al.  Geometrical characterization of stall cells on rectangular wings , 2013 .

[53]  O. Marxen,et al.  Steady solutions of the Navier-Stokes equations by selective frequency damping , 2006 .

[54]  J. L. Balleur,et al.  Viscous-Inviscid Strategy and Computation of Transonic Buffet , 1989 .

[55]  P. Spalart Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach , 1997 .

[56]  Numerical study of airfoil stall cells using a very wide computational domain , 2016 .

[57]  P. Spalart Detached-Eddy Simulation , 2009 .

[58]  G F Moss,et al.  Two-Dimensional Low-Speed Tunnel Tests on the NACA 00 I 2 Section Including Measurements Made During Pitching Oscillations at the Stall , .