Fullerene nanoarchitectonics: from zero to higher dimensions.

The strategic design of nanostructured materials, the properties of which could be controlled across different length scales and which, at the same time, could be used as building blocks for the construction of devices and functional systems into new technological platforms that are based on sustainable processes, is an important issue in bottom-up nanotechnology.Such strategic design has enabled the fabrication of materials by using convergent bottom-up and top-down strategies. Recent developments in the assembly of functional fullerene (C60) molecules, either in bulk or at interfaces, have allowed the production of shape-controlled nano-to-microsized objects that possess excellent optoelectronic properties, thus enabling the fabrication of optoelectronic devices. Because fullerene molecules can be regarded as an ideal zero-dimensional (0D) building units with attractive functions, the construction of higher-dimensional objects, that is, 1D, 2D, and 3D nanomaterials may realize important aspects of nanoarchitectonics. This Focus Review summarizes the recent developments in the production of nanostructured fullerenes and techniques for the elaboration of fullerene nanomaterials into hierarchic structures.

[1]  Katsuhiko Ariga,et al.  Nanoarchitectonics: a conceptual paradigm for design and synthesis of dimension-controlled functional nanomaterials. , 2011, Journal of nanoscience and nanotechnology.

[2]  Hiroshi M. Yamamoto,et al.  Observation of condensed structure of C60 assembled from solution , 2000 .

[3]  K. Miyazawa,et al.  Solvated structure of C60 nanowhiskers , 2005 .

[4]  Song Han,et al.  Nanoarchitectonics for Heterogeneous Integrated Nanosystems , 2008, Proceedings of the IEEE.

[5]  Bingbing Liu,et al.  Synthesis of differently shaped C70 nano/microcrystals by using various aromatic solvents and their crystallinity-dependent photoluminescence , 2012 .

[6]  T. Suga,et al.  Morphology of C60 nanotubes fabricated by the liquid–liquid interfacial precipitation method , 2005 .

[7]  Yang Yang,et al.  Patterning organic single-crystal transistor arrays , 2006, Nature.

[8]  K. Miyazawa,et al.  The effect of solvent ratio and water on the growth of C60 nanowhiskers , 2010 .

[9]  Vladimir Dyakonov,et al.  Polymer–fullerene bulk heterojunction solar cells , 2010, 1003.0359.

[10]  J. Sessler,et al.  The "Texas-sized" molecular box: a versatile building block for the construction of anion-directed mechanically interlocked structures. , 2012, Accounts of chemical research.

[11]  H. Nakanishi,et al.  Fullerene Fine Crystals with Unique Shapes and Controlled Size , 2009 .

[12]  P. Espeau,et al.  Solid state studies of the C60. 2(CH3)CCl3 solvate , 2005 .

[13]  Katsuhiko Ariga,et al.  Electrochemical-coupling layer-by-layer (ECC-LbL) assembly. , 2011, Journal of the American Chemical Society.

[14]  T. Suga,et al.  Transmission electron microscopy investigation of tubular and capsular needlelike crystals of C_60 produced by the liquid–liquid interfacial precipitation method , 2004 .

[15]  J. Tamarit,et al.  Decagonal C60 crystals grown from n-hexane solutions: solid-state and aging studies , 2000 .

[16]  J. Fréchet,et al.  Polymer-fullerene composite solar cells. , 2008, Angewandte Chemie.

[17]  K. Miyazawa,et al.  GROWTH RATE MEASUREMENT OF C60 FULLERENE NANOWHISKERS , 2008 .

[18]  Katsuhiko Ariga,et al.  A bottom-up approach toward fabrication of ultrathin PbS sheets. , 2013, Nano letters.

[19]  Nazario Martin,et al.  Materials for organic solar cells: the C60/pi-conjugated oligomer approach. , 2005, Chemical Society reviews.

[20]  T. Suga,et al.  Structural characterization of the fullerene nanotubes prepared by the liquid–liquid interfacial precipitation method , 2005 .

[21]  M. Sathish,et al.  Size-tunable hexagonal fullerene (C60) nanosheets at the liquid-liquid interface. , 2007, Journal of the American Chemical Society.

[22]  J. Schubert,et al.  Thin Solid Films , 2008 .

[23]  Baohui Li,et al.  Self-assembly of diblock copolymers under confinement , 2013 .

[24]  Katsuhiko Ariga,et al.  Fullerene crystals with bimodal pore architectures consisting of macropores and mesopores. , 2013, Journal of the American Chemical Society.

[25]  Design Concept for High-LUMO-level Fullerene Electron-acceptors for Organic Solar Cells , 2012 .

[26]  Thuc-Quyen Nguyen,et al.  Small Molecule Solution-Processed Bulk Heterojunction Solar Cells† , 2011 .

[27]  L. Wan,et al.  Controllable Preparation of Submicrometer Single-Crystal C60 Rods and Tubes Trough Concentration Depletion at the Surfaces of Seeds , 2007 .

[28]  Jinhua Ye,et al.  Nanoarchitectonics of a Au nanoprism array on WO3 film for synergistic optoelectronic response , 2011, Science and technology of advanced materials.

[29]  B. W. V. D. Waal Cross-twinning model of fcc crystal growth , 1994 .

[30]  S. Lucyszyn,et al.  DC Characterisation of C60 Whiskers and Nanowhiskers , 2007, ECS Transactions.

[31]  Katsuhiko Ariga,et al.  Two-dimensional nanoarchitectonics based on self-assembly. , 2010, Advances in colloid and interface science.

[32]  J. Fréchet,et al.  Polymer‐Fulleren‐Solarzellen , 2008 .

[33]  K. Ariga,et al.  Hierarchical supramolecular fullerene architectures with controlled dimensionality. , 2005, Chemical communications.

[34]  K. Kojima,et al.  Photo-assisted growth and polymerization of C60 ‘nano’whiskers , 2003 .

[35]  H. Choi,et al.  Self-crystallization of C(70) cubes and remarkable enhancement of photoluminescence. , 2010, Angewandte Chemie.

[36]  K. Ariga,et al.  Room temperature liquid fullerenes: an uncommon morphology of C60 derivatives. , 2006, Journal of the American Chemical Society.

[37]  K. Miyazawa,et al.  Synthesis of C60 nanotubes by liquid–liquid interfacial precipitation method: Influence of solvent ratio, growth temperature, and light illumination , 2008 .

[38]  Katsuhiko Ariga,et al.  Solvent engineering for shape-shifter pure fullerene (C60). , 2009, Journal of the American Chemical Society.

[39]  J. Tamarit,et al.  A new hexagonal phase of fullerene C60 , 1999 .

[40]  Woo-Sik Kim,et al.  Synthesis and Characterization of Various-Shaped C60 Microcrystals Using Alcohols As Antisolvents , 2010 .

[41]  S. R. Silva,et al.  Structural and optoelectronic properties of C60 rods obtained via a rapid synthesis route , 2006 .

[42]  K. Ariga,et al.  Paradigm shift from self-assembly to commanded assembly of functional materials: recent examples in porphyrin/fullerene supramolecular systems , 2012, Science and technology of advanced materials.

[43]  Katsuhiko Ariga,et al.  Nanoarchitectonics for mesoporous materials , 2012 .

[44]  Nobutsugu Minami,et al.  A Novel Preparation Method of Organic Microcrystals , 1992 .

[45]  S. G. Wang,et al.  Surface energy of arbitrary crystal plane of bcc and fcc metals , 2000 .

[46]  H. Möhwald,et al.  Recent progress in morphology control of supramolecular fullerene assemblies and its applications. , 2010, Chemical Society reviews.

[47]  Y. Tateyama,et al.  Preparation and optical properties of fullerene/ferrocene hybrid hexagonal nanosheets and large-scale production of fullerene hexagonal nanosheets. , 2009, Journal of the American Chemical Society.

[48]  B. Andersson,et al.  Synthesis and growth mechanism of differently shaped C60 nano/microcrystals produced by evaporation of various aromatic C60 solutions , 2009 .

[49]  Marappan Sathish,et al.  Nanoporous Fullerene Nanowhiskers , 2007 .

[50]  M. Stefan,et al.  Benzo[1,2-b:4,5-b']dithiophene building block for the synthesis of semiconducting polymers. , 2012, Macromolecular rapid communications.

[51]  E. Nakamura,et al.  1-Aryl-4-silylmethyl[60]fullerenes: synthesis, properties, and photovoltaic performance. , 2013, Chemistry, an Asian journal.

[52]  Katsuhiko Ariga,et al.  Inorganic Nanoarchitectonics for Biological Applications , 2012 .

[53]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[54]  Wuzong Zhou,et al.  Crystal structure and growth mechanism of unusually long fullerene (C60) nanowires. , 2008, Journal of the American Chemical Society.

[55]  A. L. Balch,et al.  Bildung eines gekrümmten Silbernitratnetzes, das sich der Form von C60 anpaßt und es umschließt – strukturelle Charakterisierung von C60{Ag(NO3)}5 , 1999 .

[56]  Xingwang Zhang,et al.  The (111) oriented growth of C60 films on GaAs(100) substrates , 1997 .

[57]  Masakazu Aono,et al.  Nanoarchitectonics: Pioneering a New Paradigm for Nanotechnology in Materials Development , 2012, Advanced materials.

[58]  Timothy R. Cook,et al.  Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials. , 2013, Chemical reviews.

[59]  P. Ramasamy,et al.  Nucleation kinetics, growth and characterization of dLAP, dLAP:KF and dLAP:NaN3 crystals , 2003 .

[60]  K. Ariga,et al.  Materials self-assembly and fabrication in confined spaces , 2012 .

[61]  Daoben Zhu,et al.  Fabrication of Low‐Dimension Nanostructures Based on Organic Conjugated Molecules , 2008 .

[62]  T. Tsuruoka,et al.  Perfectly straight nanowires of fullerenes bearing long alkyl chains on graphite. , 2006, Journal of the American Chemical Society.

[63]  H. Shin,et al.  Highly selective synthesis of C60 disks on graphite substrate by a vapor-solid process. , 2008, Angewandte Chemie.

[64]  Stefan Hecht Verschweißen, Organisieren und „Pflanzen” von organischen Molekülen auf Substratoberflächen: Bottom-up-Ansätze in der Nanoarchitektonik† , 2003 .

[65]  K. Miyazawa Synthesis and properties of fullerene nanowhiskers and fullerene nanotubes. , 2009, Journal of nanoscience and nanotechnology.

[66]  K. Ariga,et al.  Thin-film-based nanoarchitectures for soft matter: controlled assemblies into two-dimensional worlds. , 2011, Small.

[67]  Lei Jiang,et al.  Imaging as-grown [60]fullerene nanotubes by template technique. , 2002, Journal of the American Chemical Society.

[68]  Katsuhiko Ariga,et al.  Materials nanoarchitectonics for environmental remediation and sensing , 2012 .

[69]  K. Miyazawa,et al.  Structural characterization of C60 nanowhiskers formed by the liquid/liquid interfacial precipitation method , 2003 .

[70]  Katsuhiko Ariga,et al.  Mechanical Control of Nanomaterials and Nanosystems , 2012, Advanced materials.

[71]  Ying Wan,et al.  On the controllable soft-templating approach to mesoporous silicates. , 2007, Chemical reviews.

[72]  Shijun Jia,et al.  Polymer–Fullerene Bulk‐Heterojunction Solar Cells , 2009, Advanced materials.

[73]  M. Xiao,et al.  Direct synthesis of poly(arylenedisulfide)/carbon nanosheet composites via the oxidation with graphite oxide , 2005 .

[74]  Stefan Hecht,et al.  Welding, organizing, and planting organic molecules on substrate surfaces--promising approaches towards nanoarchitectonics from the bottom up. , 2003, Angewandte Chemie.

[75]  J. Yi,et al.  The effects of fullerene (C60) crystal structure on its electrochemical capacitance , 2010 .

[76]  E. Nakamura,et al.  Functionalized fullerenes in water. The first 10 years of their chemistry, biology, and nanoscience. , 2003, Accounts of chemical research.

[77]  D. Bassani,et al.  Functional monolayers from carbon nanostructures – fullerenes, carbon nanotubes, and graphene – as novel materials for solar energy conversion , 2012 .

[78]  E. Kauppinen,et al.  Multiply twinned C60 and C70 nanoparticles , 1999 .

[79]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[80]  L. Wan,et al.  Controllable crystalline structure of fullerene nanorods and transport properties of an individual nanorod , 2008 .

[81]  K. Aoyama 2D-crystallization of Rhodococcus 20S proteasome at the liquid-liquid interface , 1996 .

[82]  Arpita Varadwaj,et al.  Can a single molecule of water be completely isolated within the subnano-space inside the fullerene C60 cage? A quantum chemical prospective. , 2012, Chemistry.

[83]  T. Suga,et al.  Characterization of fullerene nanotubes prepared by the liquid–liquid interfacial precipitation method , 2005 .

[84]  K. Maitra,et al.  Formation of a Curved Silver Nitrate Network That Conforms to the Shape of C60 and Encapsulates the Fullerene—Structural Characterization of C60{Ag(NO3)}5 , 1999 .

[85]  Katsuhiko Ariga,et al.  Alcohol-induced decomposition of Olmstead's crystalline Ag(I)-fullerene heteronanostructure yields 'bucky cubes'† , 2013 .

[86]  Fei Ma,et al.  Calculation of the surface energy of fcc metals with modified embedded-atom method , 2004 .

[87]  P. Weiss A conversation with Dr. Masakazu Aono: leader in atomic-scale control and nanomanipulation. , 2007, ACS nano.

[88]  M B Avinash,et al.  Two-dimensional nanoarchitectonics: organic and hybrid materials. , 2012, Nanoscale.

[89]  Kun'ichi Miyazawa,et al.  C_60 Nanowhiskers Formed by the Liquid–liquid Interfacial Precipitation Method , 2002 .

[90]  Hiroshi Ito,et al.  Molecular recognition: from solution science to nano/materials technology. , 2012, Chemical Society reviews.

[91]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[92]  M. Aono,et al.  Forming nanomaterials as layered functional structures toward materials nanoarchitectonics , 2012 .

[93]  G. Zou,et al.  Synthesis of Thin, Rectangular C60 Nanorods Using m‐Xylene as a Shape Controller , 2006 .

[94]  Huibiao Liu,et al.  Aggregate nanostructures of organic molecular materials. , 2010, Accounts of chemical research.

[95]  Wei Huang,et al.  Dicyanometalate chemistry: A type of versatile building block for the construction of cyanide-bridged molecular architectures , 2012 .

[96]  Takeshi Akasaka,et al.  Endohedral metal atoms in pristine and functionalized fullerene cages. , 2010, Accounts of chemical research.

[97]  L. Vitagliano,et al.  Cosolute effect on crystallization of two dinucleotide complexes of bovine seminal ribonuclease from concentrated salt solutions , 1996 .

[98]  H. Nakanishi,et al.  Multibranched C60 Micro/Nanocrystals Fabricated by Reprecipitation Method , 2008 .

[99]  Xi Zhang,et al.  Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles. , 2012, Accounts of chemical research.

[100]  Jedeok Kim,et al.  Vertically Well-Aligned C60 Microtube Crystal Array Prepared Using a Solution-Based, One-Step Process , 2008 .

[101]  K. Ariga,et al.  In Situ Electrochemical Deposition and Doping of C60 Films Applied to High‐Performance Inverted Organic Photovoltaics , 2012, Advanced materials.