Satellite and surface-based remote sensing of Southeast Asian aerosols and their radiative effects

Using one year (December 2006–November 2007) of the Moderate Resolution Imaging SpectroRadiometer (MODIS), Multi-Angle Imaging SpectroRadiometer (MISR), and Clouds and the Earth's Radiant Energy System (CERES) data sets from NASA's Terra satellite, we assess the spatial and temporal distributions of aerosol properties (Aerosol Optical Depth, Fine Mode Fraction, and Single Scattering albedo) in the Southeast Asian region (SEA, 10°S–25°N, 90°E–150°E). We also provide a quantitative evaluation of regional cloud-free diurnally averaged shortwave aerosol radiative effects (SWARE) at the top of atmosphere (TOA) over both land and ocean. Our results indicate that the diurnally averaged shortwave radiative effects at the TOA over land and ocean are (− 6.4 ± 1.2 W m− 2) and (− 5.9 ± 1.3 W m− 2) with corresponding 550 nm aerosol optical depths of 0.27 ± 0.24 and 0.12 ± 0.10. Fine aerosol particles (< 0.6 μm) dominate the continental areas during the whole study period, which represents large fractions of biomass burning aerosols and anthropogenic pollutant aerosols. Our results also indicate that the monthly averaged cloud cover fractions over this region are above 60%. Therefore, further sampling of aerosols underneath these cloud layers is needed in future field campaigns.

[1]  Lorraine Remer,et al.  MISR Aerosol Product Attributes and Statistical Comparisons With MODIS , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[2]  P. Crutzen,et al.  Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles , 1990, Science.

[3]  P. Gupta,et al.  A Multisensor satellite-based assessment of biomass burning aerosol radiative impact over Amazonia , 2008 .

[4]  G. Carmichael,et al.  Influences of biomass burning during the Transport and Chemical Evolution Over the Pacific (TRACE‐P) experiment identified by the regional chemical transport model , 2003 .

[5]  Bryan N. Duncan,et al.  Transport pathways for Asian pollution outflow over the Pacific: Interannual and seasonal variations , 2003 .

[6]  Kathleen A. Crean,et al.  Multiangle imaging spectroradiometer (MISR) global aerosol optical depth validation based on 2 years of coincident Aerosol Robotic Network (AERONET) observations : Global aerosol system , 2005 .

[7]  G. Roberts,et al.  New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America , 2010 .

[8]  Bernard Pinty,et al.  Multi-angle Imaging SpectroRadiometer (MISR) instrument description and experiment overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[9]  Christoph Menke,et al.  Air pollutant emissions from rice straw open field burning in India, Thailand and the Philippines. , 2009, Environmental pollution.

[10]  F. Achard,et al.  Determination of Deforestation Rates of the World's Humid Tropical Forests , 2002, Science.

[11]  Yoram J. Kaufman,et al.  Effect of Amazon smoke on cloud microphysics and albedo - analysis from satellite imagery , 1993 .

[12]  Lorraine Remer,et al.  A critical examination of the residual cloud contamination and diurnal sampling effects on MODIS estimates of aerosol over ocean , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Tong Zhu,et al.  Spatial and temporal variations of aerosols around Beijing in summer 2006: Model evaluation and source apportionment , 2009, Journal of Geophysical Research.

[14]  B. Barkstrom,et al.  Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System Experiment , 1996 .

[15]  Yoram J. Kaufman,et al.  Satellite‐based assessment of top of atmosphere anthropogenic aerosol radiative forcing over cloud‐free oceans , 2006 .

[16]  Chung-te Lee,et al.  PCDD/F measurement at a high-altitude station in Central Taiwan: evaluation of long-range transport of PCDD/Fs during the Southeast Asia biomass burning event. , 2010, Environmental science & technology.

[17]  J. Lelieveld,et al.  Atmospheric pollutant outflow from southern Asia: a review , 2010 .

[18]  D. Jacob,et al.  Summertime influence of Asian pollution in the free troposphere over North America , 2007 .

[19]  Sundar A. Christopher,et al.  Global Monitoring and Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions (FLAMBE) Program , 2009, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[20]  J. G. Goldammer,et al.  Smoke-haze pollution: a review of the 1997 episode in Southeast Asia , 2001 .

[21]  M. McCormick,et al.  Atmospheric effects of the Mt Pinatubo eruption , 1995, Nature.

[22]  O. Boucher,et al.  A satellite view of aerosols in the climate system , 2002, Nature.

[23]  B. Holben,et al.  Multiyear analysis of amazonian biomass burning smoke radiative forcing of climate , 2004 .

[24]  Michael J. Garay,et al.  Satellite-derived aerosol optical depth over dark water from MISR and MODIS : Comparisons with AERONET and implications for climatological studies , 2007 .

[25]  K. K. Goldewijk Estimating global land use change over the past 300 years: The HYDE Database , 2001 .

[26]  G. Carmichael,et al.  Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions , 2003 .

[27]  W. Collins,et al.  Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts , 2002 .

[28]  Sundar A. Christopher,et al.  Satellite remote sensing methods for estimating clear Sky shortwave Top of atmosphere fluxes used for aerosol studies over the global oceans , 2011 .

[29]  Yoram J. Kaufman,et al.  Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS , 2005 .

[30]  V. Ramanathan,et al.  Winter to summer monsoon variation of aerosol optical depth over the tropical Indian Ocean , 2002 .

[31]  Sundar A. Christopher,et al.  Sample Bias Estimation for Cloud-Free Aerosol Effects Over Global Oceans , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Bruce A. Wielicki,et al.  Determination of Unfiltered Radiances from the Clouds and the Earth’s Radiant Energy System Instrument , 2001 .

[33]  J. Lamarque,et al.  Tropospheric ozone over the tropical Atlantic: A satellite perspective , 2003 .

[34]  J.G.J. Olivier,et al.  CO2 from non-energy use of fuels: A global, regional and national perspective based on the IPCC Tier 1 approach , 2005 .

[35]  J. Penner,et al.  Quantifying and minimizing uncertainty of climate forcing by anthropogenic aerosols , 1994 .

[36]  Teruyuki Nakajima,et al.  Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements , 2002 .

[37]  Jeffrey S. Reid,et al.  MODIS aerosol product analysis for data assimilation: Assessment of over‐ocean level 2 aerosol optical thickness retrievals , 2006 .

[38]  David J. Diner,et al.  Comparison of coincident Multiangle Imaging Spectroradiometer and Moderate Resolution Imaging Spectroradiometer aerosol optical depths over land and ocean scenes containing Aerosol Robotic Network sites , 2005 .

[39]  Yoram J. Kaufman,et al.  Aerosol distribution in the Northern Hemisphere during ACE‐Asia: Results from global model, satellite observations, and Sun photometer measurements , 2004 .

[40]  S. Christopher,et al.  Shortwave aerosol radiative forcing over cloud‐free oceans from Terra: 1. Angular models for aerosols , 2005 .

[41]  M. Chin,et al.  Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980–2006 , 2009 .

[42]  J. Reid,et al.  An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals , 2010 .

[43]  R. Balasubramanian,et al.  Impact of biomass burning on ocean water quality in Southeast Asia through atmospheric deposition: field observations , 2010 .

[44]  H. Levy,et al.  On the evolution of pollution from South and Southeast Asia during the winter‐spring monsoon , 2002 .

[45]  T. Eck,et al.  A review of biomass burning emissions part III: intensive optical properties of biomass burning particles , 2004 .

[46]  A. Smirnov,et al.  AERONET-a federated instrument network and data archive for aerosol Characterization , 1998 .

[47]  E. Vermote,et al.  Second‐generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance , 2007 .

[48]  P. Hopke,et al.  Temporal variations and spatial distribution of ambient PM2.2 and PM10 concentrations in Dhaka, Bangladesh. , 2006, The Science of the total environment.

[49]  Yoram J. Kaufman,et al.  Shortwave aerosol radiative forcing over cloud‐free oceans from Terra: 2. Seasonal and global distributions , 2005 .

[50]  D. F. Young,et al.  Angular Distribution Models for Top-of-Atmosphere Radiative Flux Estimation from the Clouds and the Earth's Radiant Energy System Instrument on the Tropical Rainfall Measuring Mission Satellite. Part II; Validation , 2003 .

[51]  H. Akimoto,et al.  Carbon monoxide, regional‐scale transport, and biomass burning in tropical continental Southeast Asia: Observations in rural Thailand , 2003 .

[52]  S. Christopher,et al.  Short-wave aerosol radiative efficiency over the global oceans derived from satellite data , 2008 .

[53]  E. Vermote,et al.  The MODIS Aerosol Algorithm, Products, and Validation , 2005 .

[54]  M. Chin,et al.  A review of measurement-based assessments of the aerosol direct radiative effect and forcing , 2005 .

[55]  Yoram J. Kaufman,et al.  Evaluation of aerosol properties over ocean from Moderate Resolution Imaging Spectroradiometer (MODIS) during ACE-Asia , 2005 .