Synchronized extension systems
暂无分享,去创建一个
[1] J. R. Büchi. Regular Canonical Systems , 1964 .
[2] M. Anselmo. Decidability of zigzag codes (French) , 1990 .
[3] Marcella Anselmo. Sur les Codes ZigZag et Leur Décidabilité , 1990, Theor. Comput. Sci..
[4] Gheorghe Paun,et al. Regulated Rewriting in Formal Language Theory , 1989 .
[5] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[6] Armen Gabrielian,et al. Pure grammars and pure languages , 1981 .
[7] Walter Bucher,et al. It is Decidable Whether a Regular Language is Pure Context-Free , 1983, Theor. Comput. Sci..
[8] Gheorghe Paun,et al. Language Theory and Molecular Genetics: Generative Mechanisms Suggested by DNA Recombination , 1997, Handbook of Formal Languages.
[9] Derick Wood,et al. Pure Grammars , 1980, Inf. Control..
[10] T. Head. Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.
[11] 守屋 悦朗,et al. J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .
[12] Jeffrey D. Ullman,et al. Introduction to Automata Theory, Languages and Computation , 1979 .
[13] Jean Berstel,et al. Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.
[14] Gheorghe Paun,et al. On the Generative Capacity of Conditional Grammars , 1979, Inf. Control..
[15] Maria Madonia,et al. A Generalization of Sardinas and Patterson's Algorithm to Z-Codes , 1993, Theor. Comput. Sci..
[16] Arto Salomaa. Jewels of formal language theory , 1981 .