Synchronized extension systems

Abstract.Synchronized extension systems (SE-systems, for short) are 4-tuples $G=(V,L_1,L_2,S)$, where V is an alphabet and $L_1$, $L_2$ and S are languages overV. They generate languages extending $L_1$ by $L_2$ to the left or to the right, and synchronizing on words in S. Such systems appear naturally when considering stacks, queues, grammar-like generative devices, splicing systems, zigzag-codes etc.

[1]  J. R. Büchi Regular Canonical Systems , 1964 .

[2]  M. Anselmo Decidability of zigzag codes (French) , 1990 .

[3]  Marcella Anselmo Sur les Codes ZigZag et Leur Décidabilité , 1990, Theor. Comput. Sci..

[4]  Gheorghe Paun,et al.  Regulated Rewriting in Formal Language Theory , 1989 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  Armen Gabrielian,et al.  Pure grammars and pure languages , 1981 .

[7]  Walter Bucher,et al.  It is Decidable Whether a Regular Language is Pure Context-Free , 1983, Theor. Comput. Sci..

[8]  Gheorghe Paun,et al.  Language Theory and Molecular Genetics: Generative Mechanisms Suggested by DNA Recombination , 1997, Handbook of Formal Languages.

[9]  Derick Wood,et al.  Pure Grammars , 1980, Inf. Control..

[10]  T. Head Formal language theory and DNA: an analysis of the generative capacity of specific recombinant behaviors. , 1987, Bulletin of mathematical biology.

[11]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[12]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[13]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[14]  Gheorghe Paun,et al.  On the Generative Capacity of Conditional Grammars , 1979, Inf. Control..

[15]  Maria Madonia,et al.  A Generalization of Sardinas and Patterson's Algorithm to Z-Codes , 1993, Theor. Comput. Sci..

[16]  Arto Salomaa Jewels of formal language theory , 1981 .