Hysteresis and Vortices Dynamics in a Turbulent Flow

Recent results about the slow dynamics present in a fully developed turbulent flow are reported. In a previous paper [de la Torre & Burguete, 2007] we showed that the mean velocity field in a turbulent flow bifurcates subcritically breaking some symmetries of the problem and becomes time-dependent because of equatorial vortices moving with a precession movement. This subcriticality produces a bistable regime, whose main characteristics were successfully reproduced using a three-well potential model with additive noise. In this paper we present the characterization of the hysteresis region, not previously observed, in this bifurcation. This hysteresis appears only for an extremely small range of parameters.

[1]  Javier Burguete,et al.  MHD measurements in the von Kármán sodium experiment , 2002 .

[2]  R Volk,et al.  Generation of a magnetic field by dynamo action in a turbulent flow of liquid sodium. , 2007, Physical review letters.

[3]  Slow dynamics in a turbulent von Kármán swirling flow. , 2007, Physical review letters.

[4]  A. Chiffaudel,et al.  Toward an experimental von Kármán dynamo: Numerical studies for an optimized design , 2004, physics/0411213.

[5]  J. Burguete,et al.  Influence of time dependent flows on the threshold of the kinematic dynamo action , 2007 .

[6]  H. K. Mo Att,et al.  Magnetic field generation in electrically conducting fluids , 1978 .

[7]  R. Stieglitz,et al.  Experimental demonstration of a homogeneous two-scale dynamo , 2000 .

[8]  J. Pinton,et al.  Magnetohydrodynamics measurements in the von Kármán sodium experiment , 2002 .

[9]  The 1 : 2 mode interaction in exactly counter-rotating von Kármán swirling flow , .

[10]  J. Pinton,et al.  ADVECTION OF A MAGNETIC FIELD BY A TURBULENT SWIRLING FLOW , 1998 .

[11]  Numerical study of swirling flow in a cylinder with rotating top and bottom , 2006 .

[12]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[13]  G. Vatistas A note on liquid vortex sloshing and Kelvin's equilibria , 1990, Journal of Fluid Mechanics.

[14]  Tomas Bohr,et al.  Polygons on a rotating fluid surface. , 2005, Physical review letters.

[15]  B. Dubrulle,et al.  Magnetic field reversals in an experimental turbulent dynamo , 2007, physics/0701076.

[16]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[17]  Aleksei V. Chechkin,et al.  Barrier crossing of a Lévy flight , 2005 .

[18]  J. Pinton,et al.  Nonlinear magnetic induction by helical motion in a liquid sodium turbulent flow. , 2003, Physical review letters.

[19]  Florent Ravelet,et al.  Multistability and memory effect in a highly turbulent flow: experimental evidence for a global bifurcation. , 2004, Physical review letters.

[20]  J. Burguete,et al.  Numerical study of homogeneous dynamo based on experimental von Kármán type flows , 2003, physics/0301032.

[21]  Gerbeth,et al.  Detection of a flow induced magnetic field eigenmode in the riga dynamo facility , 2000, Physical review letters.

[22]  F. Moisy,et al.  Experimental observation of near-heteroclinic cycles in the von Kármán swirling flow , 2005 .

[23]  Competition between axisymmetric and three-dimensional patterns between exactly counter-rotating disks , 2006 .

[24]  Caroline Nore,et al.  The 1[ratio ]2 mode interaction in exactly counter-rotating von Kármán swirling flow , 2003, Journal of Fluid Mechanics.

[25]  P. Holmes,et al.  Turbulence, Coherent Structures, Dynamical Systems and Symmetry , 1996 .

[26]  Javier Burguete,et al.  Hysteresis and Vortices Dynamics in a Turbulent Flow , 2009, Int. J. Bifurc. Chaos.

[27]  F. Daviaud,et al.  Supercritical transition to turbulence in an inertially driven von Kármán closed flow , 2008, Journal of Fluid Mechanics.

[28]  Marianela Lentini,et al.  The Von Karman Swirling Flows , 1980 .

[29]  T. Kármán Über laminare und turbulente Reibung , 1921 .