Imaging Standoff Detection of Explosives by Diffuse Reflectance IR Laser Spectroscopy

In this work we demonstrate standoff detection of traces of explosives using mid-infrared laser spectroscopy. We apply active laser illumination and use an infrared camera for collection of the diffusely backscattered laser radiation. The key component of the system is an external cavity quantum cascade. Different numerical hyperspectral image analysis methods are evaluated with respect to target detection performance and false alarm rate using both synthetic and real spectroscopic data. Traces of TNT, PETN and RDX could be identified and discriminated against non-hazardous materials by scanning the illumination wavelength over several characteristic absorption features of the explosives.

[1]  Chein-I Chang,et al.  Hyperspectral image classification and dimensionality reduction: an orthogonal subspace projection approach , 1994, IEEE Trans. Geosci. Remote. Sens..

[2]  Rolf Aidam,et al.  Imaging standoff detection of explosives using widely tunable midinfrared quantum cascade lasers , 2010 .

[3]  Manu Prasanna,et al.  High-sensitivity detection of triacetone triperoxide (TATP) and its precursor acetone. , 2007, Applied optics.

[4]  Gary A. Shaw,et al.  Hyperspectral subpixel target detection using the linear mixing model , 2001, IEEE Trans. Geosci. Remote. Sens..

[5]  M. Beck,et al.  Far infrared quantum-cascade lasers based on a bound-to-continuum transition , 2001, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[6]  Plamen A Demirev,et al.  Arrayed time-of-flight mass spectrometry for time-critical detection of hazardous agents. , 2005, Analytical chemistry.

[7]  Manu Prasanna,et al.  High-sensitivity detection of TNT , 2006, Proceedings of the National Academy of Sciences.

[8]  Qian Du,et al.  A comparative study for orthogonal subspace projection and constrained energy minimization , 2003, IEEE Trans. Geosci. Remote. Sens..

[9]  Paul H. Holloway,et al.  Detection of explosive materials by differential reflection spectroscopy , 2006 .

[10]  A. Pettersson,et al.  Laser-based standoff detection of explosives: a critical review , 2009, Analytical and bioanalytical chemistry.

[11]  Antonio J. Plaza,et al.  A quantitative and comparative analysis of endmember extraction algorithms from hyperspectral data , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Thomas Laube,et al.  Ultraviolet radiation absorption of intraocular lenses. , 2004, Ophthalmology.

[13]  A. K. Sharma,et al.  Potentials and limits of mid-infrared laser spectroscopy for the detection of explosives , 2008 .

[14]  Mattias Beck,et al.  High power Sb-free quantum cascade laser emitting at 3.3 μm above 350 K , 2011 .

[15]  Michael Huth,et al.  Suppression of martensitic phase transition at the Ni2MnGa film surface , 2008 .

[16]  Chein-I Chang,et al.  Automatic spectral target recognition in hyperspectral imagery , 2003 .

[17]  Marcella Giovannini,et al.  External cavity quantum-cascade laser tunable from 8.2to10.4μm using a gain element with a heterogeneous cascade , 2006 .

[18]  R. A. McGill,et al.  Stand-off detection of trace explosives via resonant infrared photothermal imaging , 2008 .

[19]  C. W. van Neste,et al.  Standoff photoacoustic spectroscopy , 2008 .

[20]  Siegfried R. Waldvogel,et al.  Fiber optic evanescent field sensor for detection of explosives and CO2 dissolved in water , 2008 .