Quantum Thermodynamics: A Dynamical Viewpoint
暂无分享,去创建一个
[1] A. Einstein. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt [AdP 17, 132 (1905)] , 2005, Annalen der Physik.
[2] Sadi Carnot,et al. Réflexions Sur La Puissance Motrice Du Feu Et Sur Les Machines Propres À Développer Cette Puissance , 2015 .
[3] M. Büttiker,et al. Magnon-driven quantum-dot heat engine , 2012, 1206.1259.
[4] J. G. Muga,et al. Shortcut to adiabatic passage in two- and three-level atoms. , 2010, Physical review letters.
[5] A. Allahverdyan,et al. Work extremum principle: structure and function of quantum heat engines. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] R. Kubo. Statistical-Mechanical Theory of Irreversible Processes : I. General Theory and Simple Applications to Magnetic and Conduction Problems , 1957 .
[7] R. Clausius,et al. Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen , 1850 .
[8] Herbert Spohn,et al. Irreversible Thermodynamics for Quantum Systems Weakly Coupled to Thermal Reservoirs , 2007 .
[9] I. Tsujikawa,et al. Possibility of Optical Cooling of Ruby , 1963 .
[10] S Zienau. Optical Resonance and Two Level Atoms , 1975 .
[11] W. W. Hansen,et al. Nuclear Induction , 2011 .
[12] J. Teufel,et al. Sideband cooling of micromechanical motion to the quantum ground state , 2011, Nature.
[13] MAXWELL’S DEMONS,et al. Quantum Discord and Maxwell's Demons , 2002 .
[14] Claudio Chamon,et al. Cooling through optimal control of quantum evolution , 2013 .
[15] Jincan Chen,et al. The performance evaluation of a micro/nano-scaled cooler working with an ideal Bose gas , 2012 .
[16] M. Partovi. Irreversibility, reduction, and entropy increase in quantum measurements , 1989 .
[17] Marlan O Scully,et al. Quantum photocell: using quantum coherence to reduce radiative recombination and increase efficiency. , 2010, Physical review letters.
[18] J. E. Geusic,et al. Three Level Spin Refrigeration and Maser Action at 1500 mc/sec , 1959 .
[19] Ronnie Kosloff,et al. Irreversible performance of a quantum harmonic heat engine , 2006 .
[20] Peter Salamon,et al. Heat engines in finite time governed by master equations , 1996 .
[21] Pérès,et al. Distribution of matrix elements of chaotic systems. , 1986, Physical review. A, General physics.
[22] A. Frigerio. Quantum dynamical semigroups and approach to equilibrium , 1977 .
[23] Massimiliano Esposito,et al. Efficiency at maximum power of low-dissipation Carnot engines. , 2010, Physical review letters.
[24] R. Kosloff,et al. Rise and fall of quantum and classical correlations in open-system dynamics , 2006, quant-ph/0605140.
[25] G. Lindblad. On the existence of quantum subdynamics , 1996 .
[26] K. Kraus. General state changes in quantum theory , 1971 .
[27] Robert Alicki,et al. The quantum open system as a model of the heat engine , 1979 .
[28] Heinz Schättler,et al. Time-optimal frictionless atom cooling in harmonic traps , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).
[29] G. Lindblad. On the generators of quantum dynamical semigroups , 1976 .
[30] R. Kosloff,et al. Algorithm for simulation of quantum many-body dynamics using dynamical coarse-graining , 2008, 0812.3143.
[31] Julian Schwinger,et al. Theory of Many-Particle Systems. I , 1959 .
[32] F. Rempp,et al. Quantum thermodynamic Otto machines: A spin-system approach , 2007 .
[33] G. Thomas,et al. Coupled quantum Otto cycle. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[34] Ronnie Kosloff,et al. Quantum four-stroke heat engine: thermodynamic observables in a model with intrinsic friction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[35] L. Bruneau,et al. Landauer-Büttiker Formula and Schrödinger Conjecture , 2012, 1201.3190.
[36] J. G. Muga,et al. Fast optimal frictionless atom cooling in harmonic traps: shortcut to adiabaticity. , 2009, Physical review letters.
[37] Robert S. Whitney,et al. Thermodynamic and quantum bounds on nonlinear DC thermoelectric transport , 2012, 1211.4737.
[38] I. Ventura. Theory of Superfluidity , 1979 .
[39] W. Nernst. Die theoretischen und experimentellen Grundlagen des neuen Wärmesatzes , 1918 .
[40] Entropy exchange and entanglement in the Jaynes-Cummings model (7 pages) , 2005, quant-ph/0505119.
[41] Normal-metal-superconductor tunnel junction as a Brownian refrigerator. , 2007, Physical review letters.
[42] Tien D Kieu. The second law, Maxwell's demon, and work derivable from quantum heat engines. , 2004, Physical review letters.
[43] R. Harney,et al. Optical resonance and two-level atoms , 1978, IEEE Journal of Quantum Electronics.
[44] Nieuwenhuizen,et al. Extraction of work from a single thermal bath in the quantum regime , 2000, Physical review letters.
[45] T. Hänsch,et al. Cooling of gases by laser radiation , 1975 .
[46] M. Raizen,et al. Single-photon cooling at the limit of trap dynamics: Maxwell's demon near maximum efficiency , 2008, 0810.2239.
[47] Srednicki. Chaos and quantum thermalization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[48] A. Polkovnikov. Microscopic diagonal entropy and its connection to basic thermodynamic relations , 2008, 0806.2862.
[49] Xian He,et al. The performance characteristics of an irreversible quantum Otto harmonic refrigeration cycle , 2009 .
[50] Ronnie Kosloff,et al. Optimal performance of reciprocating demagnetization quantum refrigerators. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[51] L. Brillouin,et al. Science and information theory , 1956 .
[52] G. Kurizki,et al. Minimal universal quantum heat machine. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[53] G. Lindblad. Expectations and entropy inequalities for finite quantum systems , 1974 .
[54] Lukas Novotny,et al. Subkelvin parametric feedback cooling of a laser-trapped nanoparticle. , 2012, Physical review letters.
[55] K. Lendi,et al. Quantum Dynamical Semigroups and Applications , 1987 .
[56] Ronnie Kosloff,et al. Discrete four-stroke quantum heat engine exploring the origin of friction. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[57] A. Frigerio,et al. Stationary states of quantum dynamical semigroups , 1978 .
[58] Shor,et al. Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.
[59] Jeffrey M. Gordon,et al. Quantum refrigerators in quest of the absolute zero , 2000 .
[60] R.. The Low Density Limit for an N-Level System Interacting with a Free Bose or Fermi Gas , 2022 .
[61] E. Boukobza D. J. Tannor. Thermodynamic analysis of quantum light amplification , 2006 .
[62] L. Szilard. über die Entropieverminderung in einem thermodynamischen System bei Eingriffen intelligenter Wesen , 1929 .
[63] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[64] Franco Nori,et al. Quantum thermodynamic cycles and quantum heat engines. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.
[65] M. Rigol,et al. Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.
[66] C. Regal,et al. Cooling a Single Atom in an Optical Tweezer to Its Quantum Ground State , 2012, 1209.2087.
[67] R. Kosloff,et al. On the relaxation of a two-level system driven by a strong electromagnetic field , 1995 .
[68] P. Landsberg. Foundations of Thermodynamics , 1956 .
[69] R. K. Wangsness,et al. The Dynamical Theory of Nuclear Induction , 1953 .
[70] Time-optimal processes for interacting spin systems , 2012 .
[71] On the nature of thermodynamic extremum principles: The case of maximum efficiency and maximum work , 2008 .
[72] Lajos Diósi,et al. Non-markovian continuous quantum measurement of retarded observables. , 2008, Physical review letters.
[73] F. Curzon,et al. Efficiency of a Carnot engine at maximum power output , 1975 .
[74] E. Davies,et al. Markovian master equations , 1974 .
[75] H. Wang. Quantum-mechanical Brayton engine working with a particle in a one-dimensional harmonic trap , 2013 .
[76] M. Scully,et al. Enhancing photovoltaic power by Fano-induced coherence , 2011 .
[77] Bernhard K. Meister,et al. Entropy and temperature of a quantum Carnot engine , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[78] E. O. Schulz-DuBois,et al. Three-Level Masers as Heat Engines , 1959 .
[79] J. Paz,et al. Dynamics and thermodynamics of linear quantum open systems. , 2012, Physical review letters.
[80] Robert Alicki,et al. Markovian master equation and thermodynamics of a two-level system in a strong laser field. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[81] Ronnie Kosloff,et al. Quantum absorption refrigerator. , 2011, Physical review letters.
[82] I. I. Ivanchik. THEORY OF THE MANY-PARTICLE SYSTEMS. , 1968 .
[83] Hao Wang,et al. Thermal entanglement in two-atom cavity QED and the entangled quantum Otto engine. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[84] E. Davies. A model of atomic radiation , 1978 .
[85] D. A. Edwards. The mathematical foundations of quantum mechanics , 1979, Synthese.
[86] Deutsch,et al. Quantum statistical mechanics in a closed system. , 1991, Physical review. A, Atomic, molecular, and optical physics.
[87] Paul Skrzypczyk,et al. How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.
[88] Ronnie Kosloff,et al. On the classical limit of quantum thermodynamics in finite time , 1992 .
[89] Karl Heinz Hoffmann,et al. Time-optimal controls for frictionless cooling in harmonic traps , 2011 .
[90] Cyclic cooling algorithm , 2007, quant-ph/0702071.
[91] P. Salamon,et al. Principles of control thermodynamics , 2001 .
[92] Thomas Jahnke,et al. Quantum thermodynamic processes: a control theory for machine cycles , 2007, 0712.0534.
[93] E Torrontegui,et al. Multiple Schrödinger pictures and dynamics in shortcuts to adiabaticity. , 2011, Physical review letters.
[94] Ronnie Kosloff,et al. Quantum lubrication: suppression of friction in a first-principles four-stroke heat engine. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[95] J M Gordon,et al. Quantum thermodynamic cooling cycle. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.
[96] Bjarne Andresen,et al. Thermodynamics in finite time , 1984 .
[97] Ronnie Kosloff,et al. A quantum mechanical open system as a model of a heat engine , 1984 .
[98] F. Belgiorno. Notes on the Third Law of Thermodynamics.I , 2002 .
[99] P. Landsberg. A comment on Nernst's theorem , 1989 .
[100] W. Nernst. Ueber die Berechnung chemischer Gleichgewichte aus thermischen Messungen , 1906 .
[101] Physics Letters , 1962, Nature.
[102] Jincan Chen,et al. The performance analysis of a micro-/nanoscaled quantum heat engine , 2012 .
[103] E. Lieb,et al. The physics and mathematics of the second law of thermodynamics (Physics Reports 310 (1999) 1–96)☆ , 1997, cond-mat/9708200.
[104] G. Kurizki,et al. Quantum bath refrigeration towards absolute zero: challenging the unattainability principle. , 2012, Physical review letters.
[105] R. Kosloff,et al. Short time cycles of purely quantum refrigerators. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[106] W. Lamb. Theory of an optical maser , 1964 .
[107] The low density limit for anN-level system interacting with a free bose or fermi gas , 1985 .
[108] J. E. Geusic,et al. Quantum Equivalent of the Carnot Cycle , 1967 .
[109] J. Rossnagel,et al. Single-ion heat engine at maximum power. , 2012, Physical review letters.
[110] R. Kosloff,et al. Characteristics of the limit cycle of a reciprocating quantum heat engine. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.
[111] ON THE EXACT IDENTITY BETWEEN THERMODYNAMIC AND INFORMATIC ENTROPIES IN A UNITARY MODEL OF FRICTION , 2005, quant-ph/0505219.
[112] Seth Lloyd,et al. Quantum-mechanical Maxwell’s demon , 1997 .
[113] M. Lewenstein,et al. Quantum Entanglement , 2020, Quantum Mechanics.
[114] Feldmann,et al. Performance of discrete heat engines and heat pumps in finite time , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[115] Ronnie Kosloff,et al. The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier , 1996 .
[116] Gérard G. Emch,et al. Algebraic methods in statistical mechanics and quantum field theory , 1972 .
[117] R. Kosloff,et al. Efficient simulation of quantum evolution using dynamical coarse graining , 2008, 0803.3267.
[118] Jincan Chen,et al. Quantum refrigeration cycles using spin-1/2 systems as the working substance. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[119] N. Bogolyubov. On the theory of superfluidity , 1947 .
[120] Karl Heinz Hoffmann,et al. Maximum work in minimum time from a conservative quantum system. , 2009, Physical chemistry chemical physics : PCCP.
[121] E. Sudarshan,et al. Completely Positive Dynamical Semigroups of N Level Systems , 1976 .
[122] Wojciech Hubert Zurek. Quantum discord and Maxwell's demons , 2003 .
[123] L. Di'osi,et al. Continuous quantum measurement and itô formalism , 1988, 1812.11591.
[124] Efficiency at maximum power of a heat engine working with a two-level atomic system. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.
[125] C. Van den Broeck,et al. Cooling by heating: refrigeration powered by photons. , 2012, Physical review letters.
[126] B. Andresen,et al. Minimum entropy production and the optimization of heat engines , 1980 .
[127] H. Ritsch,et al. Temperature gradient driven lasing and stimulated cooling. , 2012, Physical review letters.
[128] Jizhou He,et al. Thermal entangled four-level quantum Otto heat engine , 2012 .
[129] Zhen-Xiang Gong,et al. Entropy Generation Minimization , 1996 .
[130] Bernhard H. Haak,et al. Open Quantum Systems , 2019, Tutorials, Schools, and Workshops in the Mathematical Sciences.
[131] Franco Nori,et al. Colloquium: The physics of Maxwell's demon and information , 2007, 0707.3400.
[132] Marlan O Scully,et al. Extracting work from a single heat bath via vanishing quantum coherence. , 2002, Science.
[133] Ronnie Kosloff,et al. Quantum refrigerators and the third law of thermodynamics. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[134] Karl Heinz Hoffmann,et al. The quantum refrigerator: The quest for absolute zero , 2008, 0808.0229.
[135] Ronnie Kosloff,et al. A quantum-mechanical heat engine operating in finite time. A model consisting of spin-1/2 systems as the working fluid , 1992 .
[136] D. Comparat,et al. General conditions for quantum adiabatic evolution , 2006, 0906.4453.
[137] S. Deléglise,et al. Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode , 2011, Nature.
[138] T. Feldmann,et al. Minimal temperature of quantum refrigerators , 2009, 0902.0326.
[139] A. Nitzan,et al. Molecular heat pump. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.
[140] L. Diósi. A Short Course in Quantum Information Theory: An Approach From Theoretical Physics , 2006 .
[141] Massimiliano Esposito,et al. Thermoelectric efficiency at maximum power in a quantum dot , 2008, 0808.0216.
[142] D. Segal. Vibrational relaxation in the Kubo oscillator: stochastic pumping of heat. , 2009, The Journal of chemical physics.
[143] R. Kosloff,et al. Beyond linear response: Line shapes for coupled spins or oscillators via direct calculation of dissipated power , 1984 .
[144] Christoph Becher,et al. Feedback cooling of a single trapped ion. , 2006, Physical review letters.
[145] G. Kurizki,et al. Quantum bath refrigeration towards absolute zero: unattainability principle challenged , 2012, 1208.1015.