Mach-Zehnder Interferometer-Based High-Speed OTDM Add-Drop Multiplexing

We propose a modified semiconductor-optical-amplifier-based Mach-Zehnder interferometer (SOA-MZI) setup for high-speed optical time division multiplexing add/drop multiplexing (ADM) operation. It has the property of enabling an independent phase optimization for clear and drop ports simultaneously. It provides, therefore, an improvement of standard SOA-MZI configurations where only one output port can be optimized at each time. A detailed analysis of the ADM performance for operation from 320-Gb/s aggregate bit rates to 10- and 40-Gb/s base data rates is carried out. Theoretical results show an excellent performance for a wide range of operation conditions

[1]  R. Ludwig,et al.  160-Gb/s optical sampling by gain-transparent four-wave mixing in a semiconductor optical amplifier , 1999, IEEE Photonics Technology Letters.

[2]  B. Mikkelsen,et al.  Influence of interference noise in connection with 40 Gb/s add and drop multiplexing of OTDM signals , 1997, CLEO '97., Summaries of Papers Presented at the Conference on Lasers and Electro-Optics.

[3]  K. Petermann Laser Diode Modulation and Noise , 1988 .

[4]  R. Ludwig,et al.  Gain-transparent SOA-switch for high-bitrate OTDM add/drop multiplexing , 1999 .

[5]  G. Lehmann,et al.  160 Gbit/s OTDM add-drop networking using 275 km installed fibres , 2004 .

[6]  L. Oxenløwe,et al.  Pulse source requirements for OTDM systems , 2003, The 16th Annual Meeting of the IEEE Lasers and Electro-Optics Society, 2003. LEOS 2003..

[7]  G. Lehmann,et al.  Field trial of 160 Gbit/s OTDM add/drop node in a link 275 km deployed fiber , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[8]  Niloy K. Dutta,et al.  Long wavelength semiconductor lasers , 1988, Technical Digest., International Electron Devices Meeting.

[9]  Nikos Pleros,et al.  Ultrafast time-domain technology and its application in all-optical signal processing , 2003 .

[10]  Colja Schubert,et al.  Comparison of interferometric all-optical switches for demultiplexing applications in high-speed OTDM systems , 2002 .

[11]  Time-domain modeling of semiconductor optical amplifiers for OTDM applications , 1999 .

[12]  H. Weber,et al.  160 Gbit/s field transmission over 116 km standard single mode fibre using 160 Gbit/s OTDM and 40 Gbit/s ETDM demultiplexer , 2001 .

[13]  Bryan S. Robinson,et al.  100 Gb/s optical time-division multiplexed networks , 2002 .

[14]  E. Ciaramella,et al.  High-power widely tunable 40-GHz pulse source for 160-gb/s OTDM systems based on nonlinear fiber effects , 2004, IEEE Photonics Technology Letters.

[15]  S. Mino,et al.  160-Gb/s optical-time-division multiplexing with PPLN hybrid integrated planar lightwave circuit , 2003, IEEE Photonics Technology Letters.

[16]  S. Kawanishi,et al.  Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing , 1998 .

[17]  C. Schubert,et al.  160 Gbit/s clock recovery with electro-optical PLL using a bidirectionally operated electroabsorption modulator as phase comparator , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[18]  K. S. Jepsen,et al.  Investigation of cascadability of add-drop multiplexers in OTDM systems , 1998, 24th European Conference on Optical Communication. ECOC '98 (IEEE Cat. No.98TH8398).

[19]  G. Raybon,et al.  Novel 3R regenerator based on semiconductor optical amplifier delayed-interference configuration , 2001, IEEE Photonics Technology Letters.

[20]  K. Petermann,et al.  Novel scheme for ultrafast all-optical XOR operation , 2004, Journal of Lightwave Technology.

[21]  Shigeru Nakamura,et al.  Nonlinear phase shifts induced by semiconductor optical amplifiers with control pulses at repetition frequencies in the 40–160-GHz range for use in ultrahigh-speed all-optical signal processing , 2002 .

[22]  Bruno Lavigne,et al.  Optical regeneration at 40 Gb/s and beyond , 2003 .

[23]  Leif Katsuo Oxenløwe,et al.  Clock recovery from 160 Gbit/s data signals using phase-locked loop with interferometric optical switch based on semiconductor optical amplifier , 2001 .

[24]  Laurent Schares,et al.  Phase dynamics of semiconductor optical amplifiers at 10-40 GHz , 2003 .

[25]  Jarosław P. Turkiewicz,et al.  All-optical OTDM add-drop node at 16x10 Gbit/s in between two fibre links of 150 km , 2003 .

[26]  S. Randel,et al.  Comparative analysis of high-speed OTDM add/drop multiplexing with conventional and gain-transparent MZI gates , 2005, Proceedings of 2005 7th International Conference Transparent Optical Networks, 2005..

[27]  G. Guekos,et al.  Modeling and measurement of longitudinal gain dynamics in saturated semiconductor optical amplifiers of different length , 2000, IEEE Journal of Quantum Electronics.

[28]  A. Ellis,et al.  100 Gbit/s optical clock recovery using electrical phaselocked loop consisting of commercially available components , 2000 .

[29]  K. Stubkjaer,et al.  Semiconductor optical amplifier-based all-optical gates for high-speed optical processing , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  P. Unger,et al.  Gain, refractive index, linewidth enhancement factor from spontaneous emission of strained GaInP quantum-well lasers , 1995 .

[32]  J. Leuthold,et al.  Material gain of bulk 1.55 μm InGaAsP/InP semiconductor optical amplifiers approximated by a polynomial model , 2000 .

[33]  S. Randel,et al.  Analysis of switching windows in a gain-transparent-SLALOM configuration , 2000, Journal of Lightwave Technology.

[34]  Colja Schubert,et al.  Error-free all-optical add-drop multiplexing at 160 Gbit/s , 2003, OFC 2003 Optical Fiber Communications Conference, 2003..

[35]  G. Theophilopoulos,et al.  All-optical signal Processing and applications within the esprit project DO/spl I.bar/ALL , 2005, Journal of Lightwave Technology.

[36]  Derek Nesset,et al.  40 Gbit/s wavelength conversion over 24.6 nm using FWM in a semiconductor optical amplifier with an optimised MQW active region , 1997 .

[37]  B. Sartorius,et al.  Semiconductor-based all-optical 3R regenerator demonstrated at 40 Gbit/s , 2004 .

[38]  E. Gini,et al.  All-optical regenerative OTDM add-drop multiplexing at 40 Gb/s using monolithic InP Mach-Zehnder interferometer , 2000, IEEE Photonics Technology Letters.

[39]  J.E. Bowers,et al.  Compact 160-Gb/s add-drop multiplexing with a 40-Gb/s base-rate , 2004, Optical Fiber Communication Conference, 2004. OFC 2004.

[41]  Colja Schubert,et al.  Error-free all-optical add-drop multiplexing at 160 Gbit/s , 2003 .

[42]  Hsu-Feng Chou,et al.  Compact 160-Gb/s add-drop multiplexer with a 40-Gb/s base rate using electroabsorption modulators , 2004, IEEE Photonics Technology Letters.