Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data

As a method to ascertain person and item effects in psycholinguistics, a generalized linear mixed effect model (GLMM) with crossed random effects has met limitations in handing serial dependence across persons and items. This paper presents an autoregressive GLMM with crossed random effects that accounts for variability in lag effects across persons and items. The model is shown to be applicable to intensive binary time series eye-tracking data when researchers are interested in detecting experimental condition effects while controlling for previous responses. In addition, a simulation study shows that ignoring lag effects can lead to biased estimates and underestimated standard errors for the experimental condition effects.

[1]  Marco Alfò,et al.  Regression models for binary longitudinal responses , 1998, Stat. Comput..

[2]  G. Andrew,et al.  arm: Data Analysis Using Regression and Multilevel/Hierarchical Models , 2014 .

[3]  Chris Chatfield,et al.  The Analysis of Time Series: An Introduction , 1981 .

[4]  Sarah Brown-Schmidt,et al.  Interpretation of informational questions modulated by joint knowledge and intonational contours , 2015 .

[5]  Peter C. M. Molenaar,et al.  A dynamic factor model for the analysis of multivariate time series , 1985 .

[6]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[7]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[8]  M. Tanenhaus,et al.  The role of perspective in identifying domains of reference , 2008, Cognition.

[9]  Siwei Liu,et al.  Person‐specific versus multilevel autoregressive models: Accuracy in parameter estimates at the population and individual levels , 2017, The British journal of mathematical and statistical psychology.

[10]  Gwilym M. Jenkins,et al.  Time series analysis, forecasting and control , 1971 .

[11]  Sarah Brown-Schmidt,et al.  Adjusting conceptual pacts in three-party conversation. , 2014, Journal of experimental psychology. Learning, memory, and cognition.

[12]  B. Velichkovsky,et al.  Time course of information processing during scene perception: The relationship between saccade amplitude and fixation duration , 2005 .

[13]  T. Jaeger,et al.  Categorical Data Analysis: Away from ANOVAs (transformation or not) and towards Logit Mixed Models. , 2008, Journal of memory and language.

[14]  Stef van Buuren,et al.  Fitting arma time series by structural equation models , 1997 .

[15]  D. E. Irwin Fixation location and fixation duration as indices of cognitive processing , 2004 .

[16]  Sophia Rabe-Hesketh,et al.  Alternating imputation posterior estimation of models with crossed random effects , 2011, Comput. Stat. Data Anal..

[17]  Sung Hee Lee,et al.  Individual differences in online spoken word recognition: Implications for SLI , 2010, Cognitive Psychology.

[18]  S. Greven,et al.  On the behaviour of marginal and conditional AIC in linear mixed models , 2010 .

[19]  Ellen L. Hamaker,et al.  UvA-DARE ( Digital Academic Repository ) To center or not to center ? Investigating inertia with a multilevel autoregressive model , 2014 .

[20]  D. Bates,et al.  Fitting Linear Mixed-Effects Models Using lme4 , 2014, 1406.5823.

[21]  Dave Kleinschmidt,et al.  Immediate effects of anticipatory coarticulation in spoken-word recognition. , 2014, Journal of memory and language.

[22]  H. Bergh,et al.  Examples of Mixed-Effects Modeling with Crossed Random Effects and with Binomial Data. , 2008 .

[23]  Zhiyong Zhang,et al.  Analyzing Multiple Multivariate Time Series Data Using Multilevel Dynamic Factor Models , 2014, Multivariate behavioral research.

[24]  Paul De Boeck,et al.  Random Item IRT Models , 2008 .

[25]  H. Akaike A new look at the statistical model identification , 1974 .

[26]  P. Molenaar,et al.  Advances in Dynamic Factor Analysis of Psychological Processes , 2009 .

[27]  Francis Tuerlinckx,et al.  Changing Dynamics: Time-Varying Autoregressive Models Using Generalized Additive Modeling , 2017, Psychological methods.

[28]  G. Molenberghs,et al.  Likelihood Ratio, Score, and Wald Tests in a Constrained Parameter Space , 2007 .

[29]  Julie C. Sedivy,et al.  Subject Terms: Linguistics Language Eyes & eyesight Cognition & reasoning , 1995 .

[30]  R. Baayen,et al.  Mixed-effects modeling with crossed random effects for subjects and items , 2008 .

[31]  Herbert Hoijtink,et al.  Model Selection Based on Information Criteria in Multilevel Modeling , 2010 .

[32]  S. Brennan,et al.  Speakers' eye gaze disambiguates referring expressions early during face-to-face conversation , 2007 .

[33]  Cheng Hsiao,et al.  Analysis of Panel Data , 1987 .

[34]  Sarah Brown-Schmidt,et al.  Verb Biases Are Shaped Through Lifelong Learning , 2017, Journal of experimental psychology. Learning, memory, and cognition.

[35]  Harry Joe,et al.  Accuracy of Laplace approximation for discrete response mixed models , 2008, Comput. Stat. Data Anal..

[36]  D. Barr Analyzing ‘visual world’ eyetracking data using multilevel logistic regression , 2008 .

[37]  Sarah Brown-Schmidt,et al.  Journal of Experimental Psychology : General Perspective-Taking in Comprehension , Production , and Memory : An Individual Differences Approach , 2015 .

[38]  Sun-Joo Cho,et al.  Parameter estimation of multiple item response profile model. , 2012, The British journal of mathematical and statistical psychology.

[39]  D. Broadbent,et al.  The Cognitive Failures Questionnaire (CFQ) and its correlates. , 1982, The British journal of clinical psychology.

[40]  Sophia Rabe-Hesketh,et al.  Handling initial conditions and endogenous covariates in dynamic/transition models for binary data with unobserved heterogeneity , 2014 .

[41]  James O. Berger,et al.  Bayesian analysis of dynamic item response models in educational testing , 2013, 1304.4441.

[42]  Jean-Philippe Laurenceau,et al.  A Multilevel AR(1) Model: Allowing for Inter-Individual Differences in Trait-Scores, Inertia, and Innovation Variance , 2015, Multivariate behavioral research.

[43]  J. Trueswell,et al.  Interpreting pronouns and demonstratives in Finnish: Evidence for a form-specific approach to reference resolution , 2008 .

[44]  George E. P. Box,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[45]  Scott L. Zeger,et al.  Lorelogram: A Regression Approach to Exploring Dependence in Longitudinal Categorical Responses , 1998 .

[46]  Li Cai,et al.  Consequences of Unmodeled Nonlinear Effects in Multilevel Models , 2009 .

[47]  Andrew Gelman,et al.  Data Analysis Using Regression and Multilevel/Hierarchical Models , 2006 .

[48]  Julie C. Sedivy,et al.  Achieving incremental semantic interpretation through contextual representation , 1999, Cognition.

[49]  H. Kaufmann,et al.  Regression Models for Nonstationary Categorical Time Series: Asymptotic Estimation Theory , 1987 .

[50]  Peter C. M. Molenaar,et al.  State space methods for item response modeling of multisubject time series , 2010 .

[51]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[52]  R. Steinman,et al.  Eye movement , 1986, Vision Research.

[53]  Toni L. Bisconti,et al.  Emotional well-being in recently bereaved widows: a dynamical systems approach. , 2004, The journals of gerontology. Series B, Psychological sciences and social sciences.

[54]  Theodore A. Walls,et al.  Multilevel Autoregressive Modeling of Interindividual Differences in the Stability of a Process , 2006 .

[55]  D. Mirman,et al.  Statistical and computational models of the visual world paradigm: Growth curves and individual differences. , 2008, Journal of memory and language.

[56]  M. Cox,et al.  A mathematical model of the Indian Ocean , 1970 .

[57]  J. Raaijmakers,et al.  How to deal with "The language-as-fixed-effect fallacy": Common misconceptions and alternative solutions. , 1999 .

[58]  S de Haan-Rietdijk,et al.  On the Use of Mixed Markov Models for Intensive Longitudinal Data , 2017, Multivariate behavioral research.

[59]  Cora J. M. Maas,et al.  Robustness issues in multilevel regression analysis , 2004 .

[60]  Ying Hung,et al.  Binary Time Series Modeling With Application to Adhesion Frequency Experiments , 2008, Journal of the American Statistical Association.

[61]  Elisabeth Dévière,et al.  Analyzing linguistic data: a practical introduction to statistics using R , 2009 .