Anodic dissolution of cemented carbides of the type [(WC, M); M Co, Ni OR Fe] in sulphuric acid solution. Electrochemical impedance spectroscopy

[1]  J. Wit,et al.  The Corrosion Behavior of Polycrystalline and Single Crystal Chromium A Revised Model , 1992 .

[2]  H. Scholl,et al.  Anodic polarization of cemented carbides of the type [(WC,M): M = Fe, Ni or Co] in sulphuric acid solution , 1992 .

[3]  H. Takenouti,et al.  New trends in the investigation of electrochemical systems by impedance techniques : multi-transfer function analysis , 1990 .

[4]  James Ross Macdonald,et al.  IMPEDANCE SPECTROSCOPY: OLD PROBLEMS AND NEW DEVELOPMENTS , 1990 .

[5]  P. Żółtowski An immitance study of the mechanism of hydrogen reactions on a tungsten carbide electrode: Part II. Analysis in terms of a non-linear model , 1989 .

[6]  P. Żółtowski An immitance study of the mechanism of hydrogen reactions on a tungsten carbide electrode , 1989 .

[7]  G. Adachi,et al.  Methanol Oxidation Characteristics of Rare Earth Tungsten Bronze Electrodes Doped with Platinum , 1988 .

[8]  W. J. Tomlinson,et al.  Anodic polarization and corrosion of cemented carbides with cobalt and nickel binders , 1988 .

[9]  E. Miyazaki,et al.  Catalysis by Transition-Metal Carbides. VII. Kinetic and XPS Studies of the Decomposition of Methanol on TiC, TaC, Mo2C, WC, and W2C , 1986 .

[10]  E. Miyazaki,et al.  Catalysis by transition metal carbides: IV. Mechanism of ethylene hydrogenation and the nature of active sites on tantalum monocarbide , 1982 .

[11]  Y. Inoue,et al.  Catalytic activities of TiC, WC, and TaC for hydrogenation of ethylene , 1979 .

[12]  R. Armstrong,et al.  Tungsten carbide catalysts for hydrogen evolution , 1978 .

[13]  P. Stonehart,et al.  The relation of surface structure to the electrocatalytic activity of tungsten carbide , 1977 .

[14]  P. Stonehart,et al.  Surface characterization of catalytically active tungsten carbide (WC) , 1975 .