A transiting super-Earth close to the inner edge of the habitable zone of an M0 dwarf star

We present a super-Earth orbiting close to the inner edge of the habitable zone of the cool dwarf star K2-286 (EPIC 249889081), detected with data from the K2 mission in its $15^{th}$ campaign. The planet has radius of $2.1\pm0.2$ R$_{\oplus}$, near the 1.5 - 2.0 R$_{\oplus}$ gap in the radii distribution. The equilibrium temperature is $347^{+21}_{-11}$ K, cooler than most of the small planets with well measured masses, and the orbital period is $27.359\pm0.005$ days. K2-286, located at a distance of $76.3\pm0.3$ pc, is an M0V star with estimated effective temperature of $3926\pm100$ K, less active than other M dwarf stars hosting exoplanets. The expected radial velocity semi-amplitude induced by the planet on the star is $1.9^{+1.3}_{-1.2}$ m$\cdot$s$^{-1}$, and the amplitude of signals in transit transmission spectroscopy is estimated at $5.0\pm3.0$ ppm. Follow-up observations for mass measurements and transit spectroscopy should be desirable for this relatively bright target ($m_V=12.76, m_{Ks}=9.32$) hosting a transiting super-Earth within the inner edge of the habitable zone.

[1]  D. Huber,et al.  Revised Radii of Kepler Stars and Planets Using Gaia Data Release 2 , 2018, The Astrophysical Journal.

[2]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[3]  Nuno Santos,et al.  ESPRESSO on VLT: An Instrument for Exoplanet Research , 2017, 1711.05250.

[4]  Joseph E. Rodriguez,et al.  A temperate rocky super-Earth transiting a nearby cool star , 2017, Nature.

[5]  C. S. Fernandes,et al.  Seven temperate terrestrial planets around the nearby ultracool dwarf star TRAPPIST-1 , 2017, Nature.

[6]  W. M. Wood-Vasey,et al.  The Pan-STARRS1 Surveys , 2016, 1612.05560.

[7]  L. F. Sarmiento,et al.  A terrestrial planet candidate in a temperate orbit around Proxima Centauri , 2016, Nature.

[8]  P. Magain,et al.  Temperate Earth-sized planets transiting a nearby ultracool dwarf star , 2016, Nature.

[9]  D. Kipping,et al.  PROBABILISTIC FORECASTING OF THE MASSES AND RADII OF OTHER WORLDS , 2016, 1603.08614.

[10]  Xavier Bonfils,et al.  A rocky planet transiting a nearby low-mass star , 2015, Nature.

[11]  D. Apai,et al.  AN INCREASE IN THE MASS OF PLANETARY SYSTEMS AROUND LOWER-MASS STARS , 2015, 1510.02481.

[12]  Eric B. Ford,et al.  PROBABILISTIC MASS–RADIUS RELATIONSHIP FOR SUB-NEPTUNE-SIZED PLANETS , 2015, 1504.07557.

[13]  K. Braun,et al.  HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS , 2015, 1501.01635.

[14]  D. Charbonneau,et al.  THE OCCURRENCE OF POTENTIALLY HABITABLE PLANETS ORBITING M DWARFS ESTIMATED FROM THE FULL KEPLER DATASET AND AN EMPIRICAL MEASUREMENT OF THE DETECTION SENSITIVITY , 2015, 1501.01623.

[15]  A. Szentgyorgyi,et al.  THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS , 2014, 1412.8687.

[16]  Jaymie M. Matthews,et al.  CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454 , 2014, 1412.5674.

[17]  Russell Deitrick,et al.  KEPLER FLARES. I. ACTIVE AND INACTIVE M DWARFS , 2014, 1410.7779.

[18]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[19]  D. Apai,et al.  A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES , 2014, 1406.7356.

[20]  Andrew Szentgyorgyi,et al.  THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET , 2014, 1405.7881.

[21]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[22]  Mercedes Lopez-Morales,et al.  FEASIBILITY STUDIES FOR THE DETECTION OF O2 IN AN EARTH-LIKE EXOPLANET , 2013, 1312.1585.

[23]  Andrew Szentgyorgyi,et al.  An Earth-sized planet with an Earth-like density , 2013, Nature.

[24]  Sara Seager,et al.  TOWARD THE MINIMUM INNER EDGE DISTANCE OF THE HABITABLE ZONE , 2013, 1304.3714.

[25]  D. Charbonneau,et al.  THE OCCURRENCE RATE OF SMALL PLANETS AROUND SMALL STARS , 2013, 1302.1647.

[26]  R. Deshpande,et al.  HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: NEW ESTIMATES , 2013, 1301.6674.

[27]  G. Bruce Berriman,et al.  Astrophysics Source Code Library , 2012, ArXiv.

[28]  W. Cochran,et al.  REVISITING ρ1 CANCRI e: A NEW MASS DETERMINATION OF THE TRANSITING SUPER-EARTH , 2012, 1208.5709.

[29]  L. Kaltenegger,et al.  MODEL SPECTRA OF THE FIRST POTENTIALLY HABITABLE SUPER-EARTH—Gl581d , 2011, 1103.2953.

[30]  D. Kipping Morphological Lightcurve Distortions due to Finite Integration Time , 2010, 1004.3741.

[31]  Drake Deming,et al.  Possible thermochemical disequilibrium in the atmosphere of the exoplanet GJ 436b , 2010, Nature.

[32]  Xavier Bonfils,et al.  A super-Earth transiting a nearby low-mass star , 2009, Nature.

[33]  L. Casagrande,et al.  M dwarfs: effective temperatures, radii and metallicities , 2008, 0806.2471.

[34]  Bangalore,et al.  Elemental abundance survey of the Galactic thick disc , 2005, astro-ph/0512505.

[35]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[36]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[37]  Juan Antonio Belmonte,et al.  Handbook of Exoplanets , 2018 .

[38]  Hiroyuki Mito,et al.  The IRSA 2MASS all-sky point source catalog , 2008 .

[39]  J. Kasting,et al.  Habitable zones around main sequence stars. , 1993, Icarus.

[40]  S. H. Dole Habitable Planets for Man , 1964 .