Numerical simulation of solid state sintering

Abstract This paper discusses in detail the development of a numerical model capable of simulating microstructural evolution and macroscopic deformation during sintering of complex powder compacts. The model based on the kinetic Monte Carlo (Potts) approach simulates grain growth, vacancy diffusion, and pore annihilation at grain boundaries, which is responsible for densification. Results of 2D simulations for perfect close-packed and random starting configurations are presented and discussed. The microstructural evolution is used to obtain the sintering stress––the macroscopic stress that is equivalent to the microstructural driving force for deformation.

[1]  R. Balluffi,et al.  The mechanism of sintering of copper , 1957 .

[2]  P. C. Clapp,et al.  Nanoparticle sintering simulations , 1998 .

[3]  Jing-Song Pan,et al.  A model for the sintering of spherical particles of different sizes by solid state diffusion , 1998 .

[4]  E. Aifantis,et al.  PLASTIC INSTABILITIES, DISLOCATION PATTERNS AND NONEQUILIBRIUM PHENOMENA. , 1988 .

[5]  Toshio Kimura,et al.  Particle Orientation During Tape Casting in the Fabrication of Grain‐Oriented Bismuth Titanate , 1989 .

[6]  Robert M. McMeeking,et al.  Deformation of Interparticle Necks by Diffusion-Controlled Creep , 2005 .

[7]  L. C. Jonghe,et al.  Sintering stress of homogeneous and heterogeneous powder compacts , 1988 .

[8]  E. Olevsky,et al.  Numerical Simulation of Anisotropic Shrinkage in a 2D Compact of Elongated Particles , 2004 .

[9]  Michael F. Ashby,et al.  A first report on sintering diagrams , 1973 .

[10]  W. Beeré The second stage sintering kinetics of powder compacts , 1974 .

[11]  L. C. Jonghe,et al.  Effect of Shear Stress on Sintering , 1984 .

[12]  Hellmut F. Fischmeister,et al.  Particle Deformation and Sliding During Compaction of Spherical Powders: A Study by Quantitative Metallography , 1978 .

[13]  G. Grest,et al.  Effects of lattice anisotropy and temperature on domain growth in the two-dimensional Potts model. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[14]  Anand Jagota,et al.  Micromechanical modeling of powder compacts—I. Unit problems for sintering and traction induced deformation , 1988 .

[15]  van der Erik Giessen,et al.  Discrete dislocation and continuum descriptions of plastic flow , 2001 .

[16]  H. Riedel,et al.  Pore-boundary interactions and evolution equations for the porosity and the grain size during sintering , 1992 .

[17]  G. Ananthakrishna Formation, propagation of bands and chaos in jerky flow , 1993 .

[18]  P. Raj,et al.  Anisotropic shrinkage in tape-cast alumina : Role of processing parameters and particle shape , 2004 .

[19]  D. Johnson,et al.  New Method of Obtaining Volume, Grain‐Boundary, and Surface Diffusion Coefficients from Sintering Data , 1969 .

[20]  R. Dehoff Stereological Theory of Sintering , 1989 .

[21]  G. Scherer,et al.  On constrained sintering-II. Comparison of constitutive models , 1988 .

[22]  J. Derby,et al.  Three‐Dimensional Finite‐Element Analysis of Viscous Sintering , 2005 .

[23]  W. Kingery,et al.  Study of the Initial Stages of Sintering Solids by Viscous Flow, Evaporation‐Condensation, and Self‐Diffusion , 1955 .

[24]  E. Arzt The influence of an increasing particle coordination on the densification of spherical powders , 1982 .

[25]  V. Tikare,et al.  Simulation of Grain Growth and Pore Migration in a Thermal Gradient , 2005 .

[26]  F. Y. Wu The Potts model , 1982 .

[27]  Robert L. Coble,et al.  Initial Sintering of Alumina and Hematite , 1958 .

[28]  V. Tikare,et al.  Application of the Potts model to simulation of Ostwald ripening , 2005 .

[29]  I-Wei Chen,et al.  Computer Simulation of Final‐Stage Sintering: I, Model Kinetics, and Microstructure , 1990 .

[30]  G. Kuczynski Measurement of Self‐Diffusion of Silver without Radioactive Tracers , 1950 .

[31]  G. P. Cherepanov Physics of Sintering , 1997 .

[32]  E. Olevsky,et al.  Numerical Simulation of Solid‐State Sintering: I, Sintering of Three Particles , 2003 .

[33]  O. Hunderi,et al.  Computer simulation of grain growth , 1979 .

[34]  Hellmut F. Fischmeister,et al.  Densification of Powders by Particle Deformation , 1983 .

[35]  Jeffrey W. Bullard,et al.  Digital-image-based models of two-dimensional microstructural evolution by surface diffusion and vapor transport , 1997 .

[36]  J. Wejchert,et al.  On the distribution of cell areas in a Voronoi network , 1986 .

[37]  Y. Estrin,et al.  Evolution of dislocation densities and the critical conditions for the Portevin-Le Châtelier effect , 1990 .

[38]  J. Schneibel,et al.  The sintering of two particles by surface and grain boundary diffusion -- A two-dimensional numerical study , 1995 .

[39]  P. S. Sahni,et al.  Computer simulation of grain growth—I. Kinetics , 1984 .

[40]  Eugene A. Olevsky,et al.  Theory of sintering: from discrete to continuum , 1998 .

[41]  Ladislas P. Kubin,et al.  Mesoscopic simulations of plastic deformation , 2001 .

[42]  K. Schwarz,et al.  Simulation of dislocations on the mesoscopic scale. I. Methods and examples , 1999 .

[43]  Michael J. Hoffmann,et al.  Anisotropic sintering shrinkage in injection-moulded composite ceramics , 1993 .

[44]  Campbell Laird,et al.  Size effects of dislocation patterning in fatigued metals , 1995 .