Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera.

We describe a new ultrahigh speed Spectral OCT instrument making use of a CMOS camera and demonstrate high quality in vivo imaging of the anterior segment of the human eye. The high flexibility of the designed imaging system allows a wide range of imaging protocols. Two- and three-dimensional high quality OCT images of the cornea, the anterior chamber and the crystalline lens are presented. A high acquisition rate, up to 135,000 A-scans/second enables three-dimensional reconstruction of the anterior segment during lenticular accommodation, blinking and pupillary reaction to light stimulus. We demonstrate OCT tomographic real time imaging of the lens dynamics during accommodation and high quality OCT cross-sectional images of the entire anterior segment of the eye from the cornea up to posterior part of the crystalline lens.

[1]  A. Fercher,et al.  Measurement of intraocular distances by backscattering spectral interferometry , 1995 .

[2]  Changhuei Yang,et al.  Theoretical comparison of the sensitivity of molecular contrast optical coherence tomography techniques. , 2005, Optics express.

[3]  G Smith,et al.  Changes in Equivalent and Gradient Refractive Index of the Crystalline Lens with Accommodation , 1997, Optometry and vision science : official publication of the American Academy of Optometry.

[4]  Jay Wei,et al.  Static and dynamic analysis of the anterior segment with optical coherence tomography , 2004, Journal of cataract and refractive surgery.

[5]  Masahiko Usui,et al.  Three-Dimensional Optical Coherence Tomography of Granular Corneal Dystrophy , 2007, Cornea.

[6]  J G Fujimoto,et al.  Spectroscopic optical coherence tomography. , 2000, Optics letters.

[7]  Susana Marcos,et al.  Pentacam Scheimpflug quantitative imaging of the crystalline lens and intraocular lens. , 2009, Journal of refractive surgery.

[8]  P. Hossain,et al.  Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? , 2007, British Journal of Ophthalmology.

[9]  T. Yatagai,et al.  Three-dimensional and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments. , 2005, Optics express.

[10]  P. Kaufman,et al.  Accommodation and presbyopia. , 2001, International ophthalmology clinics.

[11]  J. Fujimoto,et al.  Spectroscopic optical coherence tomography. , 2000 .

[12]  B. Bouma,et al.  Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. , 2003, Optics letters.

[13]  Susana Marcos,et al.  Three-dimensional ray tracing on Delaunay-based reconstructed surfaces. , 2009, Applied optics.

[14]  M. Campbell,et al.  Presbyopia and the optical changes in the human crystalline lens with age , 1998, Vision Research.

[15]  A. Fercher,et al.  In vivo human retinal imaging by Fourier domain optical coherence tomography. , 2002, Journal of biomedical optics.

[16]  Maciej Wojtkowski,et al.  Spectral Optical Coherence Tomography: A Novel Technique for Cornea Imaging , 2006, Cornea.

[17]  Maciej Wojtkowski,et al.  Imaging of the anterior segment of the eye by spectral optical coherence tomography , 2002 .

[18]  S. Marcos,et al.  Corneal topography from spectral optical coherence tomography (sOCT) , 2011, Biomedical optics express.

[19]  J. Fujimoto,et al.  Fourier Domain Mode Locking (FDML): A new laser operating regime and applications for optical coherence tomography. , 2006, Optics express.

[20]  Toshifumi Mihashi,et al.  Compensation of corneal horizontal/vertical astigmatism, lateral coma, and spherical aberration by internal optics of the eye. , 2004, Journal of vision.

[21]  Marinko V Sarunic,et al.  Imaging the ocular anterior segment with real-time, full-range Fourier-domain optical coherence tomography. , 2008, Archives of ophthalmology.

[22]  Rob G L van der Heijde,et al.  The contribution of the posterior surface to the coma aberration of the human cornea. , 2007, Journal of vision.

[23]  P. Artal,et al.  Compensation of corneal aberrations by the internal optics in the human eye. , 2001, Journal of vision.

[24]  Mark W. Becker,et al.  Facial expression of emotion mediates gaze cuing , 2010 .

[25]  C K Hitzenberger,et al.  Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. , 2000, Optics letters.

[26]  G. Ripandelli,et al.  Optical coherence tomography. , 1998, Seminars in ophthalmology.

[27]  Susana Marcos,et al.  Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging. , 2010, Optics express.

[28]  T Grosvenor,et al.  Predicting Refractive Astigmatism: A Suggested Simplification of Javal's Rule , 1988, American journal of optometry and physiological optics.

[29]  Freddy T. Nguyen,et al.  Optical coherence tomography: a review of clinical development from bench to bedside. , 2007, Journal of biomedical optics.

[30]  R. West,et al.  Measurement of Refractive Errors in Young Myopes Using the COAS Shack-Hartmann Aberrometer , 2003, Optometry and vision science : official publication of the American Academy of Optometry.

[31]  Pablo Artal,et al.  Contribution of the cornea and internal surfaces to the change of ocular aberrations with age. , 2002, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  A. Fercher,et al.  Performance of fourier domain vs. time domain optical coherence tomography. , 2003, Optics express.

[33]  J. Izatt,et al.  Real-time optical coherence tomography of the anterior segment at 1310 nm. , 2001, Archives of ophthalmology.

[34]  S. Burns,et al.  Monochromatic aberrations in the accommodated human eye , 2000, Vision Research.

[35]  Adrian Glasser,et al.  Wave aberrations of the isolated crystalline lens. , 2004, Journal of vision.

[36]  Susana Marcos,et al.  Optical coherence tomography for quantitative surface topography. , 2009, Applied optics.

[37]  William J Dupps Anterior segment imaging: new milestones, new challenges. , 2006, Journal of cataract and refractive surgery.

[38]  S H Yun,et al.  Motion artifacts in optical coherence tomography with frequency-domain ranging. , 2004, Optics express.

[39]  John L Semmlow,et al.  Scheimpflug and high-resolution magnetic resonance imaging of the anterior segment: a comparative study. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[40]  S. Marcos,et al.  Optical distortion correction in optical coherence tomography for quantitative ocular anterior segment by three-dimensional imaging. , 2010, Optics express.

[41]  Norberto López-Gil,et al.  Retinal image quality in the human eye as a function of the accommodation , 1998, Vision Research.

[42]  Susana Marcos,et al.  Crystalline lens radii of curvature from Purkinje and Scheimpflug imaging. , 2006, Journal of vision.

[43]  Adrian Glasser,et al.  Changes in crystalline lens radii of curvature and lens tilt and decentration during dynamic accommodation in rhesus monkeys. , 2008, Journal of vision.

[44]  Maciej Wojtkowski,et al.  Spectral Optical Coherence Tomography in Video-Rate and 3D Imaging of Contact Lens Wear , 2007, Optometry and vision science : official publication of the American Academy of Optometry.

[45]  L F Garner Calculation of the radii of curvature of the crystalline lens surfaces. , 1997, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[46]  Maciej Wojtkowski,et al.  Improved complex spectral domain OCT for in vivo eye imaging , 2005 .

[47]  M. Wojtkowski,et al.  Real-time in vivo imaging by high-speed spectral optical coherence tomography. , 2003, Optics letters.

[48]  J. Izatt,et al.  3D refraction correction and extraction of clinical parameters from spectral domain optical coherence tomography of the cornea. , 2010, Optics express.

[49]  M. Dubbelman,et al.  The shape of the anterior and posterior surface of the aging human cornea , 2006, Vision Research.

[50]  D. Atchison,et al.  MRI study of the changes in crystalline lens shape with accommodation and aging in humans. , 2011, Journal of vision.

[51]  Fabrice Manns,et al.  Refractive index measurement of the isolated crystalline lens using optical coherence tomography , 2008, Vision Research.

[52]  C. Leung,et al.  Visualization of anterior chamber angle dynamics using optical coherence tomography. , 2005, Ophthalmology.

[53]  M. Wojtkowski,et al.  Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography. , 2008, Optics express.

[54]  M. Wojtkowski,et al.  Corneal topography with high-speed swept source OCT in clinical examination , 2011, Biomedical optics express.

[55]  G K Hung,et al.  Proximal contribution to a linear static model of accommodation and vergence. , 1996, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[56]  W. Nolan,et al.  Anterior segment imaging: ultrasound biomicroscopy and anterior segment optical coherence tomography , 2008, Current opinion in ophthalmology.

[57]  Maciej Wojtkowski,et al.  In vivo corneal high-speed, ultra high-resolution optical coherence tomography. , 2007, Archives of ophthalmology.

[58]  Susana Marcos,et al.  Dynamic accommodation with simulated targets blurred with high order aberrations , 2010, Vision Research.

[59]  M. V. van Gemert,et al.  Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography , 1997, European Conference on Biomedical Optics.

[60]  M. Wojtkowski,et al.  Phase-resolved Doppler optical coherence tomography--limitations and improvements. , 2008, Optics letters.

[61]  Anna Szkulmowska,et al.  Spectral optical coherence tomography: a new imaging technique in contact lens practice , 2006, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[62]  Ruikang K. Wang In vivo full range complex Fourier domain optical coherence tomography , 2007 .

[63]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[64]  T. Yatagai,et al.  Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography. , 2006, Applied optics.

[65]  Maciej Wojtkowski,et al.  Quality improvement for high resolution in vivo images by spectral domain optical coherence tomography with supercontinuum source , 2005 .

[66]  S. Yun,et al.  High-speed optical frequency-domain imaging. , 2003, Optics express.

[67]  Tanuj Dada,et al.  Comparison of anterior segment optical coherence tomography and ultrasound biomicroscopy for assessment of the anterior segment , 2007, Journal of cataract and refractive surgery.

[68]  L G Carney,et al.  The Relation between Corneal and Total Astigmatism , 1996, Optometry and vision science : official publication of the American Academy of Optometry.

[69]  M. V. van Gemert,et al.  Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. , 1997, Optics letters.

[70]  Changhuei Yang,et al.  Sensitivity advantage of swept source and Fourier domain optical coherence tomography. , 2003, Optics express.

[71]  Maciej Wojtkowski,et al.  Ophthalmic imaging by spectral optical coherence tomography. , 2004, American journal of ophthalmology.

[72]  E A Swanson,et al.  Micrometer-scale resolution imaging of the anterior eye in vivo with optical coherence tomography. , 1994, Archives of ophthalmology.

[73]  J. D. de Boer,et al.  Large depth-high resolution full 3D imaging of the anterior segments of the eye using high speed optical frequency domain imaging. , 2007, Optics express.

[74]  J. Duker,et al.  Ultrahigh-resolution, high-speed, Fourier domain optical coherence tomography and methods for dispersion compensation. , 2004, Optics express.

[75]  Toyohiko Yatagai,et al.  Three-dimensional Anterior Segment Optical Coherence Tomography of Filtering Blebs After Trabeculectomy , 2008, Journal of glaucoma.

[76]  M. Dubbelman,et al.  The shape of the aging human lens: curvature, equivalent refractive index and the lens paradox , 2001, Vision Research.

[77]  Maciej Wojtkowski,et al.  Granular Corneal Dystrophy in 830-nm Spectral Optical Coherence Tomography , 2008, Cornea.

[78]  M C Dunne,et al.  Measurement of astigmatism arising from the internal ocular surfaces. , 2009, Acta ophthalmologica Scandinavica.

[79]  P B Kruger,et al.  Accommodation and chromatic aberration: effect of spatial frequency , 1993, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[80]  Zhongping Chen,et al.  Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. , 1997, Optics letters.

[81]  Susana Marcos,et al.  Phakometry and lens tilt and decentration using a custom-developed Purkinje imaging apparatus: validation and measurements. , 2006, Journal of the Optical Society of America. A, Optics, image science, and vision.

[82]  G. Ha Usler,et al.  "Coherence radar" and "spectral radar"-new tools for dermatological diagnosis. , 1998, Journal of biomedical optics.

[83]  J. Fujimoto,et al.  Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. , 2008, Optics express.