Evolutionary Optimisation for Obstacle Detection and Avoidance in Mobile Robotics

This paper presents an artificial evolution-based method for stereo image analysis and its application to real-time obstacle detection and avoidance for a mobile robot. It uses the Parisian approach, which consists here in splitting the representation of the robot’s environment into a large number of simple primitives, the “flies”, which are evolved according to a biologically inspired scheme. Results obtained on real scene with different fitness functions are presented and discussed, and an exploitation for obstacle avoidance in mobile robotics is proposed.

[1]  Evelyne Lutton,et al.  Fractals in Engineering; New Trends in Theory and Applications , 2006 .

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  Marie-Jeanne Lesot,et al.  Dynamic flies: a new pattern recognition tool applied to stereo sequence processing , 2002, Pattern Recognit. Lett..

[4]  Michel Parent,et al.  Obstacle detection by Evolutionary Algorithm: the Fly Algorithm , 2004 .

[5]  Marc Schoenauer,et al.  Polar IFS+Parisian Genetic Programming=Efficient IFS Inverse Problem Solving , 2000, Genetic Programming and Evolvable Machines.

[6]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[7]  Jean Louchet An evolutionary algorithm for physical motion analysis , 1994, BMVC.

[8]  Marc Schoenauer,et al.  Individual GP: an Alternative Viewpoint for the Resolution of Complex Problems , 1999, GECCO.

[9]  Jean Louchet,et al.  Using an Individual Evolution Strategy for Stereovision , 2001, Genetic Programming and Evolvable Machines.

[10]  Jean Louchet,et al.  From Hough to Darwin: An Invidual Evolutionary Strategy Applied to Artificial Vision , 1999, Artificial Evolution.

[11]  Jean Louchet,et al.  Stereo analysis using individual evolution strategy , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[12]  W. Pinebrook The evolution of strategy. , 1990, Case studies in health administration.

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[14]  Evelyne Lutton,et al.  Genetic Algorithms and Fractals , 2007 .

[15]  Jean Louchet,et al.  Dynamic Flies: Using Real-Time Parisian Evolution in Robotics , 2001, EvoWorkshops.

[16]  Amine Boumaza Introduction de techniques d'évolution artificielle en vision tridimensionnelle et en robotique mobile , 2004 .

[17]  Arnaud de La Fortelle,et al.  Large deviations problems for star networks: The min policy , 2004, math/0406181.