The effect sampling on linear equivalence and feedback linearization

[1]  V. Varadarajan Lie groups, Lie algebras, and their representations , 1974 .

[2]  Louis R. Hunt,et al.  Design for Multi-Input Nonlinear Systems , 1982 .

[3]  R. Su On the linear equivalents of nonlinear systems , 1982 .

[4]  Eduardo D. Sontag,et al.  A concept of local observability , 1984 .

[5]  B. Jakubczyk,et al.  Automatique théorique. Orbites de pseudo-groupes de difféomorphismes et commandabilité des systèmes non linéaires en temps discret , 1984 .

[6]  A. Isidori,et al.  Nonlinear feedback in robot arm control , 1984, The 23rd IEEE Conference on Decision and Control.

[7]  Eduardo D. Sontag,et al.  An eigenvalue condition for sampled weak controllability of bilinear systems , 1986 .

[8]  Approximate and local linearizability of non-linear discrete-time systems , 1986 .

[9]  Jessy W. Grizzle,et al.  Feedback Linearization of Discrete-Time Systems , 1986 .

[10]  Ruth F. Curtain,et al.  Robust stabilization of infinite dimensional systems by finite dimensional controllers , 1986 .

[11]  A. Arapostathis,et al.  Linearization of discrete-time systems , 1987 .

[12]  B. Jakubczyk Feedback linearization of discrete-time systems , 1987 .

[13]  Aristotle Arapostathis,et al.  Remarks of discretization and linear equivalence of continuous time nonlinear systems , 1987, 26th IEEE Conference on Decision and Control.

[14]  P. Kokotovic,et al.  Feedback linearization of sampled-data systems , 1988 .

[15]  Eduardo Sontag,et al.  Controllability of Nonlinear Discrete-Time Systems: A Lie-Algebraic Approach , 1990, SIAM Journal on Control and Optimization.