Toward a better understanding of fractality in nature
暂无分享,去创建一个
Joachim Peinke | Gerold Baier | John L. Hudson | Michael Klein | Otto E. Rössler | Claus Kahlert | Jürgen Parisi | J. L. Hudson | J. Peinke | C. Kahlert | O. Rössler | J. Parisi | G. Baier | M. Klein
[1] James Gleick. Chaos: Making a New Science , 1987 .
[2] Joachim Peinke,et al. The Classes of Fractals , 1987 .
[3] O. Rössler. An equation for continuous chaos , 1976 .
[4] H. Poincaré,et al. Sur les courbes définies par les équations différentielles(III) , 1885 .
[5] O. Rössler. The Chaotic Hierarchy , 1983 .
[6] I. Bendixson. Sur les courbes définies par des équations différentielles , 1901 .
[7] Robert L. Devaney,et al. Julia sets and bifurcation diagrams for exponential maps , 1984 .
[8] Michael F. Barnsley,et al. Fractals everywhere , 1988 .
[9] B. Mandelbrot. FRACTAL ASPECTS OF THE ITERATION OF z →Λz(1‐ z) FOR COMPLEX Λ AND z , 1980 .
[10] O. Rössler. An equation for hyperchaos , 1979 .
[11] Claus Kahlert,et al. On the Role of Transformations Destroying Analyticity , 1988 .
[12] Ian Stewart,et al. Does God play dice? , by Ian Stewart. Pp 317. £15. 1989. ISBN 0-631-16847-8 (Basil Blackwell) , 1989, Mathematical Gazette.
[13] J. Parisi,et al. Smooth Decomposition of Generalized Fatou Set Explains Smooth Structure in Generalized Mandelbrot Set , 1988 .
[14] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[15] Joachim Peinke,et al. A simple morphogenetic reaction-diffusion model describing nonlinear transport phenomena in semiconductors , 1986 .
[16] John L. Hudson,et al. Chaotic forcing generates a wrinkled boundary , 1989 .
[17] H. Poincaré,et al. Les méthodes nouvelles de la mécanique céleste , 1899 .
[18] M. Klein. Mandelbrot set in a non-analytic map , 1988 .
[19] L. Sander,et al. Diffusion-limited aggregation , 1983 .
[20] J. Yorke,et al. Fractal basin boundaries , 1985 .
[21] Benoit B. Mandelbrot,et al. Fractal Geometry of Nature , 1984 .
[22] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[23] Otto E. Rössler,et al. Analogues to a Julia Boundary Away from Analyticity , 1987 .
[24] John L. Hudson,et al. A FOUR-VARIABLE CHAOTIC CHEMICAL REACTION , 1986 .
[25] M. Barnsley,et al. Iterated function systems and the global construction of fractals , 1985, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[26] Peter H. Richter,et al. The Beauty of Fractals , 1988, 1988.
[27] C. Mira,et al. Chaotic Dynamics: From the One-Dimensional Endomorphism to the Two-Dimensional Diffeomorphism , 1987 .
[28] Gerold Baier,et al. Nowhere differentiable boundaries in differentiable systems. A proposed explanation , 1991 .
[29] J. Parisi,et al. Instability of the Mandelbrot Set , 1987 .
[30] J. Parisi,et al. Non-Differentiable Structure in the Generalized Mandelbrot Set , 1988 .
[31] Bodil Branner. THE PARAMETER SPACE FOR COMPLEX CUBIC POLYNOMIALS , 1986 .
[32] Joachim Peinke,et al. Hyperchaos and Julia Sets , 1986 .
[33] D. Sullivan,et al. On the dynamics of rational maps , 1983 .
[34] Leo P. Kadanoff,et al. Fractals: Where's the Physics? , 1986 .