Germline deletion of the miR-17-92 cluster causes growth and skeletal defects in humans

[1]  A. Munnich,et al.  Dissection of the MYCN locus in Feingold syndrome and isolated oesophageal atresia , 2011, European Journal of Human Genetics.

[2]  B. Black,et al.  Bmp signaling regulates myocardial differentiation from cardiac progenitors through a MicroRNA-mediated mechanism. , 2010, Developmental cell.

[3]  Francis Impens,et al.  The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. , 2010, Molecular cell.

[4]  E. Furth,et al.  The myc-miR-17~92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. , 2010, Cancer research.

[5]  M. Holder,et al.  Delineation of 15q13.3 microdeletions , 2010, Clinical genetics.

[6]  J. Lovén,et al.  MYCN-regulated microRNAs repress estrogen receptor-α (ESR1) expression and neuronal differentiation in human neuroblastoma , 2010, Proceedings of the National Academy of Sciences.

[7]  S. Lowe,et al.  miR-19 is a key oncogenic component of mir-17-92. , 2009, Genes & development.

[8]  Doron Betel,et al.  Genetic dissection of the miR-17~92 cluster of microRNAs in Myc-induced B-cell lymphomas. , 2009, Genes & development.

[9]  Tamas Dalmay,et al.  Mutations in the seed region of human miR-96 are responsible for nonsyndromic progressive hearing loss , 2009, Nature Genetics.

[10]  Richard Grundy,et al.  The miR-17/92 polycistron is up-regulated in sonic hedgehog-driven medulloblastomas and induced by N-myc in sonic hedgehog-treated cerebellar neural precursors. , 2009, Cancer research.

[11]  Manuel Corpas,et al.  DECIPHER: Database of Chromosomal Imbalance and Phenotype in Humans Using Ensembl Resources. , 2009, American journal of human genetics.

[12]  Fedor V. Karginov,et al.  The miR-17∼92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma , 2009, Proceedings of the National Academy of Sciences.

[13]  H. Brunner,et al.  Genotype–phenotype correlations in MYCN‐related Feingold syndrome , 2008, Human mutation.

[14]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[15]  A. Donfrancesco,et al.  Antagomir-17-5p Abolishes the Growth of Therapy-Resistant Neuroblastoma through p21 and BIM , 2008, PloS one.

[16]  Joshua M. Korn,et al.  Mapping and sequencing of structural variation from eight human genomes , 2008, Nature.

[17]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[18]  Birgit Samans,et al.  MYCN regulates oncogenic MicroRNAs in neuroblastoma , 2007, International journal of cancer.

[19]  P. Hurlin,et al.  Activities of N-Myc in the developing limb link control of skeletal size with digit separation , 2007, Development.

[20]  E. Furth,et al.  Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster , 2006, Nature Genetics.

[21]  Richard A Young,et al.  Chromatin immunoprecipitation and microarray-based analysis of protein location , 2006, Nature Protocols.

[22]  Adriana P. Mendizabal,et al.  Interstitial deletion of 13q22→q31: case report and review of the literature , 2006, Clinical dysmorphology.

[23]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Y. Yatabe,et al.  A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. , 2005, Cancer research.

[25]  H. Tagawa,et al.  A microRNA cluster as a target of genomic amplification in malignant lymphoma , 2005, Leukemia.

[26]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[27]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[28]  Hans van Bokhoven,et al.  MYCN haploinsufficiency is associated with reduced brain size and intestinal atresias in Feingold syndrome , 2005, Nature Genetics.

[29]  L. Feuk,et al.  Detection of large-scale variation in the human genome , 2004, Nature Genetics.

[30]  Hiroyuki Tagawa,et al.  Identification and characterization of a novel gene, C13orf25, as a target for 13q31-q32 amplification in malignant lymphoma. , 2004, Cancer research.

[31]  H. Brunner,et al.  Feingold syndrome: Clinical review and genetic mapping , 2003, American journal of medical genetics. Part A.

[32]  J. Rossant,et al.  Dissecting the role of N-myc in development using a single targeting vector to generate a series of alleles , 1998, Current Biology.

[33]  Y. Lacassie,et al.  Syndrome of microcephaly, facial and hand abnormalities, tracheoesophageal fistula, duodenal atresia, and developmental delay. , 1997, American journal of medical genetics.

[34]  H. Kondoh,et al.  Defects of embryonic organogenesis resulting from targeted disruption of the N-myc gene in the mouse. , 1993, Development.

[35]  V. Stewart,et al.  Embryonic lethality in mice homozygous for a targeted disruption of the N-myc gene. , 1992, Genes & development.

[36]  A. Perkins,et al.  Loss of N-myc function results in embryonic lethality and failure of the epithelial component of the embryo to develop. , 1992, Genes & development.

[37]  A. Joyner,et al.  A targeted mutation reveals a role for N-myc in branching morphogenesis in the embryonic mouse lung. , 1992, Genes & development.

[38]  D. Lacombe,et al.  Twelve new patients with 13q deletion syndrome: genotype-phenotype analyses in progress. , 2009, European journal of medical genetics.

[39]  The Myc – miR-17 ∼ 92 Axis Blunts TGF β Signaling and Production of Multiple TGF β -Dependent Antiangiogenic Factors , 2022 .