Development of microwave multiplexer for the Super DIOS mission: 38 transition-edge sensor x-ray microcalorimeter readout with microwave multiplexing

We are developing an x-ray imaging spectrometer for Super DIOS satellite mission, a future x-ray observatory, planned by JAXA, to be launched in 2030’s. Super DIOS will reveal the nature of the missing baryon in the warm-hot intergalactic medium because of its fine energy and angular resolution, large effective area and large field of view. A main detector on-board Super DIOS consists of a transition-edge sensor (TES) microcalorimeter array of over 30,000 pixels working at a temperature below 100 mK and it poses a considerable technical difficulty to the readout. A microwave superconducting quantum interference device (SQUID) multiplexing is promising technique and expected to achieve a large scale readout of more than 30,000 pixels. We describe our development of a 40-channel microwave SQUID multiplexer with low-noise characteristics∗ and a demonstration of simultaneously reading out 40-pixel TESs. Finally, we discuss a future prospect and a feasibility of reading out an array of more than 30,000 pixels.

[1]  M. P. Bruijn,et al.  Low-noise microwave SQUID multiplexed readout of 38 x-ray transition-edge sensor microcalorimeters , 2020 .

[2]  J. Bregman The Search for the Missing Baryons at Low Redshift , 2007, 0706.1787.

[3]  Luigi Piro,et al.  STUDYING THE WARM-HOT INTERGALACTIC MEDIUM IN EMISSION , 2010, Monthly Notices of the Royal Astronomical Society.

[4]  K. Irwin,et al.  Superconducting multiplexer for arrays of transition edge sensors , 1999 .

[5]  Kazuhisa Mitsuda,et al.  Investigation of Large Coupling Between TES X-Ray Microcalorimeter and Microwave Multiplexer Based on Microstrip SQUID , 2019, IEEE Transactions on Applied Superconductivity.

[6]  Yoshitaka Ishisaki,et al.  Super DIOS: future x-ray spectroscopic mission to search for dark baryons , 2018, Astronomical Telescopes + Instrumentation.

[7]  R. Cen,et al.  Where Are the Baryons , 1998, astro-ph/9806281.

[8]  Joel N. Ullom,et al.  Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy , 2015 .

[9]  A. D. Dolgov Big Bang Nucleosynthesis , 2002 .

[10]  XRISM Science Team,et al.  Science with the X-ray Imaging and Spectroscopy Mission (XRISM) , 2020, 2003.04962.

[11]  Stephen J. Smith,et al.  Multiabsorber transition-edge sensors for x-ray astronomy , 2019 .

[12]  Samuel Harvey Moseley,et al.  Signal processing for microcalorimeters , 1993 .

[13]  Ryuichi Fujimoto,et al.  Locating the warm-hot intergalactic medium in the simulated local universe , 2004, astro-ph/0408140.

[14]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[15]  M. Hidaka,et al.  Microwave SQUID Multiplexer for TES Readout , 2013, IEEE Transactions on Applied Superconductivity.

[16]  Stephen J. Smith,et al.  Lynx x-ray microcalorimeter , 2019, Journal of astronomical telescopes, instruments, and systems.

[17]  Adrian T. Lee,et al.  Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors , 2001 .

[18]  Kazuhisa Mitsuda,et al.  Adjustable SQUID-resonator direct coupling in microwave SQUID multiplexer for TES microcalorimeter array , 2017, IEICE Electron. Express.

[19]  Jörn Beyer,et al.  Code-division multiplexing of superconducting transition-edge sensor arrays , 2010 .

[20]  Kent D. Irwin,et al.  Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .

[21]  Pourya Khosropanah,et al.  Development of a Ti/Au TES Microcalorimeter Array as a Backup Sensor for the Athena/X-IFU Instrument , 2019, Journal of Low Temperature Physics.

[22]  Gregory F. Snyder,et al.  The illustris simulation: Public data release , 2015, Astron. Comput..

[23]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[24]  Luigi Piro,et al.  Athena: the X-ray observatory to study the hot and energetic Universe , 2015 .

[25]  Kent D. Irwin,et al.  Flux-Ramp Modulation for SQUID Multiplexing , 2012 .

[26]  Britton D. Smith,et al.  THE BARYON CENSUS IN A MULTIPHASE INTERGALACTIC MEDIUM: 30% OF THE BARYONS MAY STILL BE MISSING , 2011, 1112.2706.

[27]  Kazuhisa Mitsuda,et al.  Readout of X-ray Pulses from a Single-pixel TES Microcalorimeter with Microwave Multiplexer Based on SQUIDs Directly Coupled to Resonators , 2018, Journal of Low Temperature Physics.

[28]  M. Ridder,et al.  Characterization of High Aspect-Ratio TiAu TES X-ray Microcalorimeter Array Under AC Bias , 2019, Journal of Low Temperature Physics.

[29]  Kazuhisa Mitsuda,et al.  Observational Signatures of the Warm-Hot Intergalactic Medium and X-ray Absorption Lines by the Halo of our Galaxy , 2003 .

[30]  Kent D. Irwin,et al.  Microwave SQUID multiplexer , 2004 .