Development of microwave multiplexer for the Super DIOS mission: 38 transition-edge sensor x-ray microcalorimeter readout with microwave multiplexing
暂无分享,去创建一个
Kazuhisa Mitsuda | Shuichi Nagasawa | Yuki Nakashima | Emanuele Taralli | Akira Sato | Hiroki Akamatsu | Marcel P. Bruijn | Jan Willem den Herder | Luciano Gottardi | Marcel L. Ridder | Hirotake Yamamori | Shinya Yamada | Fuminori Hirayama | Satoshi Kohjiro | Jian-Rong Gao | Kenichiro Nagayoshi | Ryota Hayakawa | Noriko N. Yamasaki
[1] M. P. Bruijn,et al. Low-noise microwave SQUID multiplexed readout of 38 x-ray transition-edge sensor microcalorimeters , 2020 .
[2] J. Bregman. The Search for the Missing Baryons at Low Redshift , 2007, 0706.1787.
[3] Luigi Piro,et al. STUDYING THE WARM-HOT INTERGALACTIC MEDIUM IN EMISSION , 2010, Monthly Notices of the Royal Astronomical Society.
[4] K. Irwin,et al. Superconducting multiplexer for arrays of transition edge sensors , 1999 .
[5] Kazuhisa Mitsuda,et al. Investigation of Large Coupling Between TES X-Ray Microcalorimeter and Microwave Multiplexer Based on Microstrip SQUID , 2019, IEEE Transactions on Applied Superconductivity.
[6] Yoshitaka Ishisaki,et al. Super DIOS: future x-ray spectroscopic mission to search for dark baryons , 2018, Astronomical Telescopes + Instrumentation.
[7] R. Cen,et al. Where Are the Baryons , 1998, astro-ph/9806281.
[8] Joel N. Ullom,et al. Review of superconducting transition-edge sensors for x-ray and gamma-ray spectroscopy , 2015 .
[9] A. D. Dolgov. Big Bang Nucleosynthesis , 2002 .
[10] XRISM Science Team,et al. Science with the X-ray Imaging and Spectroscopy Mission (XRISM) , 2020, 2003.04962.
[11] Stephen J. Smith,et al. Multiabsorber transition-edge sensors for x-ray astronomy , 2019 .
[12] Samuel Harvey Moseley,et al. Signal processing for microcalorimeters , 1993 .
[13] Ryuichi Fujimoto,et al. Locating the warm-hot intergalactic medium in the simulated local universe , 2004, astro-ph/0408140.
[14] M. Fukugita,et al. THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.
[15] M. Hidaka,et al. Microwave SQUID Multiplexer for TES Readout , 2013, IEEE Transactions on Applied Superconductivity.
[16] Stephen J. Smith,et al. Lynx x-ray microcalorimeter , 2019, Journal of astronomical telescopes, instruments, and systems.
[17] Adrian T. Lee,et al. Single superconducting quantum interference device multiplexer for arrays of low-temperature sensors , 2001 .
[18] Kazuhisa Mitsuda,et al. Adjustable SQUID-resonator direct coupling in microwave SQUID multiplexer for TES microcalorimeter array , 2017, IEICE Electron. Express.
[19] Jörn Beyer,et al. Code-division multiplexing of superconducting transition-edge sensor arrays , 2010 .
[20] Kent D. Irwin,et al. Demonstration of a multiplexer of dissipationless superconducting quantum interference devices , 2008 .
[21] Pourya Khosropanah,et al. Development of a Ti/Au TES Microcalorimeter Array as a Backup Sensor for the Athena/X-IFU Instrument , 2019, Journal of Low Temperature Physics.
[22] Gregory F. Snyder,et al. The illustris simulation: Public data release , 2015, Astron. Comput..
[23] R. B. Barreiro,et al. Planck 2018 results , 2018, Astronomy & Astrophysics.
[24] Luigi Piro,et al. Athena: the X-ray observatory to study the hot and energetic Universe , 2015 .
[25] Kent D. Irwin,et al. Flux-Ramp Modulation for SQUID Multiplexing , 2012 .
[26] Britton D. Smith,et al. THE BARYON CENSUS IN A MULTIPHASE INTERGALACTIC MEDIUM: 30% OF THE BARYONS MAY STILL BE MISSING , 2011, 1112.2706.
[27] Kazuhisa Mitsuda,et al. Readout of X-ray Pulses from a Single-pixel TES Microcalorimeter with Microwave Multiplexer Based on SQUIDs Directly Coupled to Resonators , 2018, Journal of Low Temperature Physics.
[28] M. Ridder,et al. Characterization of High Aspect-Ratio TiAu TES X-ray Microcalorimeter Array Under AC Bias , 2019, Journal of Low Temperature Physics.
[29] Kazuhisa Mitsuda,et al. Observational Signatures of the Warm-Hot Intergalactic Medium and X-ray Absorption Lines by the Halo of our Galaxy , 2003 .
[30] Kent D. Irwin,et al. Microwave SQUID multiplexer , 2004 .