FAST Drift Scan Survey for Hi Intensity Mapping: I. Preliminary Data Analysis

This work presents the initial results of the drift-scan observation for the neutral hydrogen (Hi) intensity mapping survey with the Five-hundred-meter Aperture Spherical radio Telescope (FAST). The data analyzed in this work were collected in night observations from 2019 through 2021. The primary findings are based on 28 hr of drift-scan observation carried out over 7 nights in 2021, which covers 60 deg2 sky area. Our main findings are, first, our calibration strategy can successfully correct both the temporal and bandpass gain variation over the 4 hr drift-scan observation. Second, the continuum maps of the surveyed region are made with frequency resolution of 28 kHz and pixel area of 2.95arcmin2 . The pixel noise levels of the continuum maps are slightly higher than the forecast assuming T sys = 20 K, which are 36.0 mK (for 10.0 s integration time) at the 1050–1150 MHz band, and 25.9 mK (for 16.7 s integration time) at the 1323–1450 MHz band, respectively. Third, the flux-weighted differential number count is consistent with the NRAO-VLA Sky Survey (NVSS) catalog down to the confusion limit ∼7 mJy beam−1. Finally, the continuum flux measurements of the sources are consistent with those found in the literature. The difference in the flux measurement of 81 isolated NVSS sources is about 6.3%. Our research offers a systematic analysis for the FAST Hi intensity mapping drift-scan survey and serves as a helpful resource for further cosmology and associated galaxies sciences with the FAST drift-scan survey.

[1]  E. Chapman,et al.  Detecting the H i power spectrum in the post-reionization universe with SKA-Low , 2023, Monthly Notices of the Royal Astronomical Society.

[2]  K. Grainge,et al.  H i intensity mapping with MeerKAT: Power spectrum detection in cross-correlation with WiggleZ galaxies , 2022, Monthly Notices of the Royal Astronomical Society.

[3]  G. Tucker,et al.  The tianlai dish array low-z surveys forecasts , 2022, Monthly Notices of the Royal Astronomical Society.

[4]  A. Stebbins,et al.  The Electromagnetic Characteristics of the Tianlai Cylindrical Pathfinder Array , 2022, Research in Astronomy and Astrophysics.

[5]  Yichao Li,et al.  Eliminating Primary Beam Effect in Foreground Subtraction of Neutral Hydrogen Intensity Mapping Survey with Deep Learning , 2022, The Astrophysical Journal.

[6]  Peng Wu,et al.  A path to precision cosmology: synergy between four promising late-universe cosmological probes , 2022, Journal of Cosmology and Astroparticle Physics.

[7]  G. Hinshaw,et al.  Detection of Cosmological 21 cm Emission with the Canadian Hydrogen Intensity Mapping Experiment , 2022, The Astrophysical Journal.

[8]  G. Lagache,et al.  1/f noise analysis for FAST H i intensity mapping drift-scan experiment , 2021, Monthly Notices of the Royal Astronomical Society.

[9]  Peng Wu,et al.  Prospects for measuring dark energy with 21 cm intensity mapping experiments: A joint survey strategy , 2022, Science China Physics, Mechanics & Astronomy.

[10]  M. Spinelli,et al.  SKAO H i Intensity Mapping: Blind Foreground Subtraction Challenge , 2021, Monthly Notices of the Royal Astronomical Society.

[11]  W. Percival,et al.  HI constraints from the cross-correlation of eBOSS galaxies and Green Bank Telescope intensity maps , 2021, 2102.04946.

[12]  Peng Wu,et al.  Prospects for Constraining Interacting Dark Energy Models with 21 cm Intensity Mapping Experiments , 2021, The Astrophysical Journal.

[13]  K. Grainge,et al.  H i intensity mapping with MeerKAT: calibration pipeline for multidish autocorrelation observations , 2020, Monthly Notices of the Royal Astronomical Society.

[14]  A. Stebbins,et al.  Data processing pipeline for Tianlai experiment , 2020, Astron. Comput..

[15]  M. Spinelli,et al.  H i intensity mapping with MeerKAT: primary beam effects on foreground cleaning , 2020, 2011.10815.

[16]  Trevor M. Oxholm,et al.  The Tianlai dish pathfinder array: design, operation, and performance of a prototype transit radio interferometer , 2020, Monthly Notices of the Royal Astronomical Society.

[17]  M. Jarvis,et al.  H i intensity mapping with the MIGHTEE survey: power spectrum estimates , 2020, 2009.13550.

[18]  K. Grainge,et al.  H i intensity mapping with MeerKAT: 1/f noise analysis , 2020, Monthly Notices of the Royal Astronomical Society.

[19]  J. Marriner,et al.  The Tianlai Cylinder Pathfinder array: System functions and basic performance analysis , 2020, Science China Physics, Mechanics & Astronomy.

[20]  R. Yao,et al.  The fundamental performance of FAST with 19-beam receiver at L band , 2020, Research in Astronomy and Astrophysics.

[21]  Xuelei Chen,et al.  Forecast for FAST: from galaxies survey to intensity mapping , 2019, Monthly Notices of the Royal Astronomical Society.

[22]  F. Abdalla,et al.  Cosmology with Phase 1 of the Square Kilometre Array Red Book 2018: Technical specifications and performance forecasts , 2018, Publications of the Astronomical Society of Australia.

[23]  R. Giovanelli,et al.  The Arecibo Legacy Fast ALFA Survey: The ALFALFA Extragalactic H i Source Catalog , 2018, The Astrophysical Journal.

[24]  C. Dickinson,et al.  Potential impact of global navigation satellite services on total power H i intensity mapping surveys , 2018, Monthly Notices of the Royal Astronomical Society.

[25]  M. Jarvis,et al.  A Large Sky Survey with MeerKAT , 2018 .

[26]  C. Dickinson,et al.  Impact of simulated 1/f noise for HI intensity mapping experiments , 2017, 1711.07843.

[27]  N. Oppermann,et al.  Low-amplitude clustering in low-redshift 21-cm intensity maps cross-correlated with 2dF galaxy densities , 2017, 1710.00424.

[28]  B. W. Meyers,et al.  A Southern-Sky Total Intensity Source Catalogue at 2.3 GHz from S-Band Polarisation All-Sky Survey Data , 2017, Publications Astronomical Society of Australia.

[29]  S. Brough,et al.  Measuring the 2D baryon acoustic oscillation signal of galaxies in WiggleZ: cosmological constraints , 2016, Monthly notices of the Royal Astronomical Society.

[30]  R. Perley,et al.  An Accurate Flux Density Scale from 50 MHz to 50 GHz , 2016, 1609.05940.

[31]  H. C. Chiang,et al.  HIRAX: a probe of dark energy and radio transients , 2016, Astronomical Telescopes + Instrumentation.

[32]  F. B. Abdalla,et al.  Erasing the Milky Way: new cleaning technique applied to GBT intensity mapping data , 2015, 1510.05453.

[33]  David Schlegel,et al.  SDSS-III Baryon Oscillation Spectroscopic Survey Data Release 12: galaxy target selection and large-scale structure catalogues , 2015, 1509.06529.

[34]  David Alonso,et al.  Cosmology with a SKA HI intensity mapping survey , 2015, 1501.03989.

[35]  Graeme Smecher,et al.  Canadian Hydrogen Intensity Mapping Experiment (CHIME) pathfinder , 2014, Astronomical Telescopes and Instrumentation.

[36]  E. R. Switzer,et al.  Determination of z ∼ 0.8 neutral hydrogen fluctuations using the 21 cm intensity mapping autocorrelation , 2013, 1304.3712.

[37]  C. Dickinson,et al.  H i intensity mapping: a single dish approach , 2012, 1209.0343.

[38]  J. Roerdink,et al.  A morphological algorithm for improving radio-frequency interference detection , 2012, 1201.3364.

[39]  Abraham Loeb,et al.  21 cm cosmology in the 21st century , 2011, Reports on progress in physics. Physical Society.

[40]  J. M. Martin,et al.  21 cm observation of large-scale structures at z ~ 1 - Instrument sensitivity and foreground subtraction , 2011, 1108.1474.

[41]  R. Giovanelli,et al.  ALFALFA H i data stacking – I. Does the bulge quench ongoing star formation in early-type galaxies? , 2010, 1009.4309.

[42]  Kevin Bandura,et al.  An intensity map of hydrogen 21-cm emission at redshift z ≈ 0.8 , 2010, Nature.

[43]  Michael Biehl,et al.  Post‐correlation radio frequency interference classification methods , 2010, 1002.1957.

[44]  J. Bagla,et al.  HI as a Probe of the Large Scale Structure in the Post-Reionization Universe: Visibility Correlations and Prospects for Detection , 2009, 0908.3857.

[45]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[46]  vZeljko Ivezi'c,et al.  A UNIFIED CATALOG OF RADIO OBJECTS DETECTED BY NVSS, FIRST, WENSS, GB6, AND SDSS , 2008, 0806.0650.

[47]  Stuart Wyithe,et al.  Baryonic acoustic oscillations in 21-cm emission: a probe of dark energy out to high redshifts , 2007, 0709.2955.

[48]  A. Loeb,et al.  Fluctuations in 21-cm emission after reionization , 2007, 0708.3392.

[49]  Prasanth H. Nair,et al.  The Arecibo Legacy Fast ALFA Survey. III. H I Source Catalog of the Northern Virgo Cluster Region , 2007, astro-ph/0702316.

[50]  A. Saintonge The Arecibo Legacy Fast ALFA Survey. IV. Strategies for Signal Identification and Survey Catalog Reliability , 2007, astro-ph/0702178.

[51]  Matias Zaldarriaga,et al.  Cosmological Parameter Estimation Using 21 cm Radiation from the Epoch of Reionization , 2005, astro-ph/0512263.

[52]  R. Perley,et al.  The VLA Low-Frequency Sky Survey , 2005, 0706.1191.

[53]  E. al.,et al.  The Arecibo Legacy Fast ALFA Survey. I. Science Goals, Survey Design, and Strategy , 2005, astro-ph/0508301.

[54]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: power-spectrum analysis of the final data set and cosmological implications , 2005, astro-ph/0501174.

[55]  R. Nichol,et al.  Detection of the Baryon Acoustic Peak in the Large-Scale Correlation Function of SDSS Luminous Red Galaxies , 2005, astro-ph/0501171.

[56]  E. al.,et al.  The HIPASS catalogue - I. Data presentation , 2004, astro-ph/0406384.

[57]  E. al.,et al.  The HIPASS catalogue - II. Completeness, reliability and parameter accuracy , 2004, astro-ph/0406380.

[58]  J. Weller,et al.  Neutral hydrogen surveys for high-redshift galaxy clusters and protoclusters , 2004, astro-ph/0401340.

[59]  UK.,et al.  First Results from the HI Jodrell All Sky Survey: inclination-dependent selection effects in a 21-cm blind survey , 2003, astro-ph/0302317.

[60]  B. Gibson,et al.  The HI Parkes All Sky Survey: southern observations, calibration and robust imaging , 2001 .

[61]  Max Tegmark How to Make Maps from Cosmic Microwave Background Data without Losing Information , 1996, astro-ph/9611130.

[62]  J. Riley,et al.  The 7C survey of radio sources at 151 MHz — a region covering RA 9h to 16h and Dec. 20° to 35° , 1996 .

[63]  G. W. Torrence,et al.  The Texas Survey of Radio Sources Covering -35.5 degrees < declination < 71.5 degrees at 365 MHz , 1996 .

[64]  P. Gregory,et al.  The GB6 Catalog of Radio Sources , 1996 .

[65]  E. Greisen,et al.  The NRAO VLA Sky Survey , 1996 .

[66]  J. Condon,et al.  Confusion and flux-density error distributions , 1974 .

[67]  O. Montenbruck,et al.  Springer Handbook of Global Navigation Satellite Systems , 2017 .

[68]  Ashley J. Ross,et al.  The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Data Releases 10 and 11 Galaxy samples , 2014 .

[69]  M. Langlois,et al.  Society of Photo-Optical Instrumentation Engineers , 2005 .

[70]  A. L. Edwards,et al.  A New Catalog of 53,522 4.85 GHz Sources , 1991 .