2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids
暂无分享,去创建一个
Bing Zhou | Stewart Greenhalgh | Mark Greenhalgh | S. Greenhalgh | B. Zhou | Mark Greenhalgh | Bing Zhou
[1] G. M. Habberjam. THE EFFECTS OF ANISOTROPY ON SQUARE ARRAY RESISTIVITY MEASUREMENTS , 1972 .
[2] Peter N. Shive,et al. Singularity removal: A refinement of resistivity modeling techniques , 1989 .
[3] Gerald W. Hohmann,et al. Topographic effects in resistivity and induced-polarization surveys , 1980 .
[4] D. Kershaw. The incomplete Cholesky—conjugate gradient method for the iterative solution of systems of linear equations , 1978 .
[5] H. Saunders,et al. Finite Elements—A Second Course (Vol. II) , 1987 .
[6] W. Daily,et al. The effects of noise on Occam's inversion of resistivity tomography data , 1996 .
[7] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[8] Michael W. Asten. The Influence of Electrical Anisotropy on Mise a la Masse Surveys , 1974 .
[9] Irshad R. Mufti,et al. FINITE‐DIFFERENCE RESISTIVITY MODELING FOR ARBITRARILY SHAPED TWO‐DIMENSIONAL STRUCTURES , 1976 .
[10] Matthew J. Yedlin,et al. Some refinements on the finite-difference method for 3-D dc resistivity modeling , 1996 .
[11] J. Oden. Finite Elements: A Second Course , 1983 .
[12] U. Das,et al. RESISTIVITY AND INDUCED POLARIZATION RESPONSES OF ARBITRARILY SHAPED 3‐D BODIES IN A TWO‐LAYERED EARTH* , 1987 .
[13] B. James. Efficient microcomputer-based finite-difference resistivity modeling via Polozhii decomposition , 1985 .
[14] T. Lee. An Integral Equation and its Solution for some Two- and Three-Dimensional Problems in Resistivity and Induced Polarization , 2007 .
[15] Jonathan Richard Shewchuk,et al. Delaunay refinement algorithms for triangular mesh generation , 2002, Comput. Geom..
[16] M. Hvožďara,et al. An integral equations solution of the forward D.C. geoelectric problem for a 3-D body of inhomogeneous conductivity buried in a halfspace , 1998 .
[17] Zdeněk Martinec,et al. Spectral–finite element approach to three‐dimensional electromagnetic induction in a spherical earth , 1999 .
[18] William H. Press,et al. Numerical recipes in Fortran 90: the art of parallel scientific computing, 2nd Edition , 1996, Fortran numerical recipes.
[20] Z. Bing,et al. Finite element three-dimensional direct current resistivity modelling: accuracy and efficiency considerations , 2001 .
[21] T. Günther,et al. Three‐dimensional modelling and inversion of dc resistivity data incorporating topography – II. Inversion , 2006 .
[22] M. Papadrakakis,et al. Improving the efficiency of incomplete Choleski preconditionings , 1991 .
[23] Benchun Duan,et al. Selection of the wavenumbers k using an optimization method for the inverse Fourier transform in 2.5D electrical modelling , 2000 .
[24] A. Dey,et al. Resistivity modeling for arbitrarily shaped three-dimensional structures , 1979 .
[25] E. Mundry. GEOELECTRICAL MODEL CALCULATIONS FOR TWO‐DIMENSIONAL RESISTIVITY DISTRIBUTIONS* , 1984 .
[26] K. Spitzer. A 3-D FINITE-DIFFERENCE ALGORITHM FOR DC RESISTIVITY MODELLING USING CONJUGATE GRADIENT METHODS , 1995 .
[27] J. Coggon. Electromagnetic and electrical modeling by the finite element method , 1971 .
[28] Alex Marcuello,et al. 2-D resistivity modeling; an approach to arrays parallel to the strike direction , 1991 .
[29] H. T. Holcombe,et al. Three-dimensional terrain corrections in resistivity surveys , 1984 .
[30] Jie Zhang,et al. 3-D resistivity forward modeling and inversion using conjugate gradients , 1995 .
[31] Christopher C. Pain,et al. Anisotropic resistivity inversion , 2003 .
[32] M. A. Ajiz,et al. A robust incomplete Choleski‐conjugate gradient algorithm , 1984 .
[33] A. Bruaset. A survey of preconditioned iterative methods , 1995 .
[34] M. Loke. Topographic Modelling in Electrical Imaging Inversion , 2000 .
[35] C. Yin,et al. Geoelectrical fields in a layered earth with arbitrary anisotropy , 1999 .
[36] Chester J. Weiss,et al. Adaptive finite-element modeling using unstructured grids: The 2D magnetotelluric example , 2005 .
[37] A. Dey,et al. Resistivity modelling for arbitrarily shaped two-dimensional structures , 1979 .
[38] D. Komatitsch,et al. Introduction to the spectral element method for three-dimensional seismic wave propagation , 1999 .
[39] Klaus Spitzer,et al. Finite element resistivity modelling for three-dimensional structures with arbitrary anisotropy , 2005 .
[40] Zhou Bing,et al. Cross‐hole resistivity tomography using different electrode configurations , 2000 .
[41] R. Mackie,et al. 3‐D resistivity forward modeling and inversion using conjugate gradients , 1994 .
[42] G. W. Hohmann,et al. An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions , 1981 .