Uranus Pathfinder: exploring the origins and evolution of Ice Giant planets

The “Ice Giants” Uranus and Neptune are a different class of planet compared to Jupiter and Saturn. Studying these objects is important for furthering our understanding of the formation and evolution of the planets, and unravelling the fundamental physical and chemical processes in the Solar System. The importance of filling these gaps in our knowledge of the Solar System is particularly acute when trying to apply our understanding to the numerous planetary systems that have been discovered around other stars. The Uranus Pathfinder (UP) mission thus represents the quintessential aspects of the objectives of the European planetary community as expressed in ESA’s Cosmic Vision 2015–2025. UP was proposed to the European Space Agency’s M3 call for medium-class missions in 2010 and proposed to be the first orbiter of an Ice Giant planet. As the most accessible Ice Giant within the M-class mission envelope Uranus was identified as the mission target. Although not selected for this call the UP mission concept provides a baseline framework for the exploration of Uranus with existing low-cost platforms and underlines the need to develop power sources suitable for the outer Solar System. The UP science case is based around exploring the origins, evolution, and processes at work in Ice Giant planetary systems. Three broad themes were identified: (1) Uranus as an Ice Giant, (2) An Ice Giant planetary system, and (3) An asymmetric magnetosphere. Due to the long interplanetary transfer from Earth to Uranus a significant cruise-phase science theme was also developed. The UP mission concept calls for the use of a Mars Express/Rosetta-type platform to launch on a Soyuz–Fregat in 2021 and entering into an eccentric polar orbit around Uranus in the 2036–2037 timeframe. The science payload has a strong heritage in Europe and beyond and requires no significant technology developments.

Supriya Chakrabarti | Philippe Zarka | Stas Barabash | Christopher T. Russell | Kevin H. Baines | Kunio M. Sayanagi | Yves Langevin | Robert W. Ebert | Nicholas Achilleos | Frank Sohl | Martin Pätzold | Baptiste Cecconi | Matthew S. Tiscareno | Mathieu Barthelemy | Laurent Lamy | Sandrine Vinatier | Gabriel Tobie | Leigh N. Fletcher | Daniel Gautier | Javier Martin-Torres | Jan-Erik Wahlund | Andrew J. Coates | Andrew N. Fazakerley | Norbert Krupp | Eric Quémerais | Elias Roussos | John F. Cooper | Nadine Nettelmann | Marta Entradas | Silvia Tellmann | Joachim Saur | Henrik Melin | Chris Paranicas | Chris Chaloner | Ingo Müller-Wodarg | Michele K. Dougherty | Sebastien Hess | Nick Sergis | Olivier Mousis | Lisa Peacocke | Pierre Henri | Cesar Bertucci | Jonathan J. Fortney | Richard Holme | Paul Schenk | Glyn Collinson | Benoît Noyelles | Elizabeth P. Turtle | Marina Galand | Renée Prangé | Don Banfield | Adam Masters | Matthew Hedman | Ravit Helled | Pontus Brandt | Geraint H. Jones | Thomas P. Andert | C. Russell | G. Schubert | D. Banfield | J. Fortney | K. Baines | A. Sánchez-Lavega | S. Barabash | Y. Langevin | I. Pater | N. Achilleos | M. Dougherty | D. Gautier | R. Prangé | P. Zarka | J. Cooper | Ö. Karatekin | J. Wahlund | R. Holme | N. Teanby | U. Christensen | N. André | B. Cecconi | S. Hess | A. Masters | E. Roussos | N. Krupp | S. Miller | A. Christou | J. Martín‐Torres | M. Pätzold | R. Ebert | E. Turtle | F. Sohl | R. Courtin | S. Chakrabarti | M. Hofstadter | A. Coates | C. Agnor | P. Schenk | S. Tellmann | G. Tobie | T. Andert | G. Collinson | G. Jones | S. Kemble | M. Tiscareno | M. Hedman | K. Sayanagi | C. Paranicas | L. Fletcher | O. Mousis | S. Vinatier | M. Galand | I. Müller‐Wodarg | E. Quémerais | H. Melin | R. Helled | L. Lamy | C. Arridge | M. Barthélémy | P. Brandt | P. Henri | N. Nettelmann | B. Noyelles | A. Rymer | J. Saur | N. Sergis | T. Stallard | C. Chaloner | A. Fazakerley | E. Sittler | C. Bertucci | J. Leisner | Nicolas André | Gerald Schubert | Christopher S. Arridge | Steve Miller | Tom Stallard | Michael Guest | Abigail M. Rymer | Craig B. Agnor | Andrew Bacon | Regis Courtin | Ulrich Christensen | Mark D. Hofstadter | Steve Kemble | Andy F. Cheng | Apostolos Christou | Jaques Gustin | Özgur Karatekin | Jared Leisner | Imke Pater | Agustin Sánchez-Lavega | Edward C. Jr. Sittler | Nick A. Teanby | A. Cheng | A. Bacon | M. Guest | L. Peacocke | M. Entradas | J. Gustin | A. Sánchez‐Lavega | I. Müller-Wodarg

[1]  E. Dunham,et al.  The rings of Uranus , 1977, Nature.

[2]  L. Capone,et al.  The ionospheres of Saturn, Uranus, and Neptune , 1977 .

[3]  S. Squyres,et al.  Tidal evolution of the Uranian satellites. , 1983 .

[4]  J. Cooper,et al.  Energetic Charged Particles in the Uranian Magnetosphere , 1986, Science.

[5]  J. Connerney,et al.  The rotation period of Uranus , 1986, Nature.

[6]  E. Miner,et al.  The Voyager 2 Encounter with the Uranian System , 1986, Science.

[7]  John D. Richardson,et al.  Plasmasphere formation in arbitrarily oriented magnetospheres , 1986 .

[8]  J. Waite,et al.  The ionosphere of Uranus: A myriad of possibilities , 1986 .

[9]  V. Vasyliūnas,et al.  The convection-dominated magnetosphere of Uranus , 1986 .

[10]  R. McNutt,et al.  The magnetotail of Uranus , 1987 .

[11]  J. Plescia Cratering history of the Uranian satellites: Umbriel, Titania, and Oberon , 1987 .

[12]  E. Stone The Voyager 2 Encounter with Uranus , 1987 .

[13]  P. Zarka,et al.  Beaming of Uranian nightside kilometric radio emission and inferred source location , 1987 .

[14]  Richard Selesnick,et al.  Survey of electrons in the Uranian magnetosphere: Voyager 2 observations , 1987 .

[15]  J. Wisdom,et al.  Tidal evolution of the Uranian satellites: II. An explanation of the anomalously high orbital inclination of Miranda , 1989 .

[16]  Robert P. Thompson,et al.  Orbits of shepherd satellites deduced from the structure of the rings of Uranus , 1990, Nature.

[17]  A. Coustenis,et al.  The albedo, effective temperature, and energy balance of Uranus, as determined from Voyager IRIS data , 1990 .

[18]  J. Wisdom,et al.  Tidal evolution of the Uranian satellites: III. Evolution through the Miranda-Umbriel 3:1, Miranda-Ariel 5:3, and Ariel-Umbriel 2:1 mean-motion commensurabilities , 1990 .

[19]  W. C. Tittemore Tidal heating of Ariel , 1990 .

[20]  J. Connerney,et al.  The magnetic field and magnetospheric configuration of Uranus , 1991 .

[21]  C. Porco,et al.  Dynamics and structure of the Uranian rings , 1991 .

[22]  S. K. Croft,et al.  Geology of the Uranian satellites , 1991 .

[23]  P. Zarka,et al.  Uranus as a radio source , 1991 .

[24]  Robert A. Jacobson,et al.  The masses of Uranus and its major satellites from Voyager tracking data and earth-based Uranian satellite data , 1992 .

[25]  B. Sandel,et al.  The Uranian aurora and its relationship to the magnetosphere , 1994 .

[26]  R. Rand,et al.  Synchronous Locking of Tidally Evolving Satellites , 1996 .

[27]  R. Holme,et al.  The magnetic fields of Uranus and Neptune: Methods and models , 1996 .

[28]  J. Lissauer,et al.  Orbital Stability of the Uranian Satellite System , 1997 .

[29]  P. Zarka Auroral radio emissions at the outer planets: Observations and theories , 1998 .

[30]  J. Burns,et al.  Evidence for non-synchronous rotation of Europa , 1998, Nature.

[31]  Jonathan Tennyson,et al.  H2 Quadrupole and H3+ Emission from Uranus: The Uranian Thermosphere, Ionosphere, and Aurora , 1999 .

[32]  Tristan Guillot THE INTERIORS OF GIANT PLANETS: Models and Outstanding Questions , 2001 .

[33]  David E. Smith,et al.  A procedure for determining the nature of Mercury's core , 2002 .

[34]  P. Thomas,et al.  Report of the IAU/IAG Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites: 2000 , 2002 .

[35]  J. Lebreton,et al.  Studies on the re-use of the Mars Express platform , 2002 .

[36]  Paolo Ferri,et al.  Utilising Rosetta commonality to reduce mission operations cost for Mars Express , 2003 .

[37]  Ulrich R. Christensen,et al.  Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos , 2004, Nature.

[38]  D. Saumon,et al.  Shock Compression of Deuterium and the Interiors of Jupiter and Saturn , 2004, astro-ph/0403393.

[39]  J. McConnell,et al.  The ionospheres-thermospheres of the giant planets , 2004 .

[40]  Tamas I. Gombosi,et al.  Three‐dimensional MHD simulations of the magnetosphere of Uranus , 2004 .

[41]  S. Stanley,et al.  Convective-region geometry as the cause of Uranus' and Neptune's unusual magnetic fields , 2004, Nature.

[42]  K. Tsiganis,et al.  Origin of the orbital architecture of the giant planets of the Solar System , 2005, Nature.

[43]  Ashwin R. Vasavada,et al.  Jovian atmospheric dynamics: an update after Galileo and Cassini , 2005 .

[44]  David Jewitt,et al.  The Solar System Beyond The Planets , 2006 .

[45]  T. Spohn,et al.  Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects , 2006 .

[46]  S. Stanley,et al.  Numerical dynamo models of Uranus' and Neptune's magnetic fields , 2006 .

[47]  C. Porco,et al.  Planetary Rings , 2019, Fundamental Planetary Science.

[48]  M. Showalter,et al.  The Second Ring-Moon System of Uranus: Discovery and Dynamics , 2006, Science.

[49]  M. Showalter,et al.  New Dust Belts of Uranus: One Ring, Two Ring, Red Ring, Blue Ring , 2006, Science.

[50]  P. Blondel,et al.  Solar system update , 2006 .

[51]  Imke de Pater,et al.  The Dark Side of the Rings of Uranus , 2007, Science.

[52]  P. Zarka Plasma interactions of exoplanets with their parent star and associated radio emissions , 2006 .

[53]  D. Tholen,et al.  Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006 , 2007 .

[54]  K. Glassmeier,et al.  The Rosetta Mission: Flying Towards the Origin of the Solar System , 2007 .

[55]  A. Showman Numerical Simulations of Forced Shallow-Water Turbulence: Effects of Moist Convection on the Large-Scale Circulation of Jupiter and Saturn , 2007 .

[56]  S. Hensley,et al.  Titan's Rotation Reveals an Internal Ocean and Changing Zonal Winds , 2008, Science.

[57]  M. Showalter,et al.  HST Observations of the Uranian Outer Ring-Moon System , 2008 .

[58]  M. Showalter,et al.  The Dark Spot in the atmosphere of Uranus in 2006: Discovery, description, and dynamical simulations ✩ , 2008 .

[59]  Glen H. Fountain,et al.  The New Horizons Spacecraft , 2007, 0709.4288.

[60]  K. Sayanagi,et al.  The Emergence of Multiple Robust Zonal Jets from Freely Evolving, Three-Dimensional Stratified Geostrophic Turbulence with Applications to Jupiter , 2008 .

[61]  F. Herbert,et al.  The Aurora and Magnetic Field of Uranus , 2008 .

[62]  Minimum Mass Solar Nebulae and Planetary Migration , 2009, 0903.5077.

[63]  Michael E. Brown,et al.  Neptune Ring Science with Argo - A Voyage through the Outer Solar System , 2009 .

[64]  D. Banfield,et al.  Neptune Science with Argo – A Voyage through the Outer Solar System , 2009 .

[65]  Fritz M. Neubauer,et al.  Induced Magnetic Fields in Solar System Bodies , 2010 .

[66]  J. Anderson,et al.  Uranus and Neptune: Shape and rotation , 2010, 1006.3840.

[67]  J. Fortney,et al.  The Interior Structure, Composition, and Evolution of Giant Planets , 2009, 0912.0533.

[68]  J. Laskar,et al.  A COLLISIONLESS SCENARIO FOR URANUS TILTING , 2009, 0912.0181.

[69]  T. Encrenaz,et al.  SEASONAL VARIABILITY IN THE IONOSPHERE OF URANUS , 2011 .

[70]  T. Guillot,et al.  SELF-CONSISTENT MODEL ATMOSPHERES AND THE COOLING OF THE SOLAR SYSTEM'S GIANT PLANETS , 2011, 1101.0606.

[71]  D. Tholen,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 , 2011 .