Metal ion ligands in hyperaccumulating plants

Metal-hyperaccumulating plants have the ability to take up extraordinary quantities of certain metal ions without succumbing to toxic effects. Most hyperaccumulators select for particular metals but the mechanisms of selection are not understood at the molecular level. While there are many metal-binding biomolecules, this review focuses only on ligands that have been reported to play a role in sequestering, transporting or storing the accumulated metal. These include citrate, histidine and the phytosiderophores. The metal detoxification role of metallothioneins and phytochelatins in plants is also discussed.

[1]  D. Douchkov,et al.  Nicotianamine synthase: Gene isolation, gene transfer and application for the manipulation of plant iron assimilation , 2002, Plant and Soil.

[2]  C. Furlani Stability constants of metal-ion complexes , 1965 .

[3]  Ilya Raskin,et al.  Zinc Ligands in the Metal Hyperaccumulator Thlaspi caerulescens As Determined Using X-ray Absorption Spectroscopy , 1999 .

[4]  A. Baker,et al.  Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae). , 1994, The New phytologist.

[5]  T. Kitahara,et al.  A NOVEL SYNTHETIC APPROACH TOWARDS PHYTOSIDEROPHORES : EXPEDITIOUS SYNTHESIS OF NICOTIANAMINE AND 2'-DEOXYMUGINEIC ACID , 1998 .

[6]  D. Salt,et al.  Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). , 1999, Plant physiology.

[7]  Y. Hamada,et al.  Total Syntheses of Phytosiderophores, 3-Epi-Hydroxymugineic Acid, Distichonic Acid A, and 2′-Hydroxynicotianamine , 1994 .

[8]  Y. Hamada,et al.  Total synthesis of 2′-deoxymugineic acid and nicotianamine , 1994 .

[9]  G. Anderegg,et al.  Correlation between metal complex formation and biological activity of nicotianamine analogues , 1989 .

[10]  Olivier Proux,et al.  Forms of Zinc Accumulated in the HyperaccumulatorArabidopsis halleri 1 , 2002, Plant Physiology.

[11]  Purification and characterization of nicotianamine synthase from Fe-deficient barley roots , 1994 .

[12]  J. Schroeder,et al.  Enhancing the first enzymatic step in the histidine biosynthesis pathway increases the free histidine pool and nickel tolerance in Arabidopsis thaliana , 2004, FEBS letters.

[13]  G. Bañuelos,et al.  Phytoremediation of Contaminated Soil and Water , 1999 .

[14]  M. Palmgren,et al.  A long way ahead: understanding and engineering plant metal accumulation. , 2002, Trends in plant science.

[15]  T. Jaffré,et al.  Sebertia acuminata: A Hyperaccumulator of Nickel from New Caledonia , 1976, Science.

[16]  F. Cotton,et al.  Basic Inorganic Chemistry , 1976 .

[17]  H. Küpper,et al.  Tissue- and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy1[w] , 2004, Plant Physiology.

[18]  D. Douchkov,et al.  Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco , 2005 .

[19]  T. Kitahara,et al.  Expeditious synthesis of nicotianamine and 2′-deoxymugineic acid , 2001 .

[20]  D. Salt,et al.  Constitutively Elevated Salicylic Acid Signals Glutathione-Mediated Nickel Tolerance in Thlaspi Nickel Hyperaccumulators1 , 2005, Plant Physiology.

[21]  Katia Pianelli,et al.  Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. , 2003, Analytical chemistry.

[22]  M. Zenk,et al.  Hyperaccumulation, complexation and distribution of nickel in Sebertia acuminata. , 1998, Phytochemistry.

[23]  T. Ishida,et al.  X-Ray crystal structure of the copper (II) complex of mugineic acid, a naturally occurring metal chelator of graminaceous plants , 1981 .

[24]  Jean-François Gaillard,et al.  XAS speciation of arsenic in a hyper-accumulating fern. , 2003, Environmental science & technology.

[25]  X. Shan,et al.  Accumulation and uptake of light rare earth elements in a hyperaccumulator Dicropteris dichotoma , 2003 .

[26]  A. Baker,et al.  STUDIES ON METAL UPTAKE BY PLANTS FROM SERPENTINE AND NON-SERPENTINE POPULATIONS OF THLASPI GOESINGENSE HÁLÁCSY (CRYCUFERAE). , 1984, The New phytologist.

[27]  D. D. Perrin,et al.  Stability constants of metal-ion complexes , 1979 .

[28]  A. Narula An analysis of the diastereomeric transition state interactions for stereoselective epoxidation of acyclic allylic alcohols with peroxy-acids , 1981 .

[29]  I. E. Woodrow,et al.  Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. , 2002, Functional plant biology : FPB.

[30]  G. Scholz,et al.  Translocation of copper and other micronutrients in tomato plants (Lycopersicon esculentum Mill.): nicotianamine-stimulated copper transport in the xylem , 1996 .

[31]  U. W. Stephan,et al.  The nicotianamine molecule is made-to-measure for complexation of metal micronutrients in plants , 2004, Biometals.

[32]  J. Feldmann,et al.  The Nature of Arsenic-Phytochelatin Complexes in Holcus lanatus and Pteris cretica1 , 2004, Plant Physiology.

[33]  M. Buděšínský,et al.  Nicotianamine, a possible phytosiderophore of general occurrence , 1980 .

[34]  L. Ma,et al.  Arsenic complexes in the arsenic hyperaccumulator Pteris vittata (Chinese brake fern). , 2004, Journal of chromatography. A.

[35]  L. Kochian,et al.  The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  R. Hancock,et al.  Metal Complexes in Aqueous Solutions , 1996 .

[37]  Thomas V. O'Halloran,et al.  Transition Metal Speciation in the Cell: Insights from the Chemistry of Metal Ion Receptors , 2003, Science.

[38]  F. Zhao,et al.  Root exudates of the hyperaccumulator Thlaspi caerulescens do not enhance metal mobilization. , 2001, The New phytologist.

[39]  Jose R Peralta-Videa,et al.  Cadmium uptake and translocation in tumbleweed (Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. , 2004, Chemosphere.

[40]  S. McGrath,et al.  Heavy metal uptake and chemical changes in the rhizosphere of Thlaspi caerulescens and Thlaspi ochroleucum grown in contaminated soils , 1997, Plant and Soil.

[41]  S. Mori,et al.  Biosynthesis of nicotianamine in the suspension-cultured cells of tobacco (Nicotiana megalosiphon) , 1989, Biology of Metals.

[42]  H. Schat,et al.  The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. , 2002, Journal of experimental botany.

[43]  K. Schreiber,et al.  Metal complex formation by nicotianamine, a possible phytosiderophore , 1983, Experientia.

[44]  J. Rose,et al.  Nickel speciation in Sebertia acuminata, a plant growing on a lateritic soil of New Caledonia , 2004 .

[45]  T. Maitani,et al.  The Composition of Metals Bound to Class III Metallothionein (Phytochelatin and Its Desglycyl Peptide) Induced by Various Metals in Root Cultures of Rubia tinctorum , 1996, Plant physiology.

[46]  S. McGrath,et al.  The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. , 2003, The New phytologist.

[47]  A. Baker ACCUMULATORS AND EXCLUDERS ?STRATEGIES IN THE RESPONSE OF PLANTS TO HEAVY METALS , 1981 .

[48]  H. Bäumlein,et al.  Isolation, characterization and cDNA cloning of nicotianamine synthase from barley. A key enzyme for iron homeostasis in plants. , 1999, European journal of biochemistry.

[49]  W. Schmidt,et al.  Fe homeostasis in plant cells: Does nicotianamine play multiple roles in the regulation of cytoplasmic Fe concentration? , 2001, Planta.

[50]  A. Baker,et al.  Nickel-accumulating plants from the ancient serpentine soils of Cuba. , 1996, The New phytologist.

[51]  Heribert Hirt,et al.  Convergence and divergence of stress-induced mitogen-activated protein kinase signaling pathways at the level of two distinct mitogen-activated protein kinase kinases. , 2002, The Plant cell.

[52]  V. Römheld,et al.  Evidence for a specific uptake system for iron phytosiderophores in roots of grasses. , 1986, Plant physiology.

[53]  S. McGrath,et al.  Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri , 2000 .

[54]  M. Mandrand-Berthelot,et al.  Nickel transport systems in microorganisms , 2000, Archives of Microbiology.

[55]  T. Jaffré,et al.  THE RELATION BETWEEN NICKEL AND CITRIC ACID IN SOME NICKEL-ACCUMULATING PLANTS , 1978 .

[56]  L. Kochian,et al.  Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl) , 2002, Planta.

[57]  C. Cobbett,et al.  Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. , 2002, Annual review of plant biology.

[58]  Leonard Krall,et al.  Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. , 2004, The Plant journal : for cell and molecular biology.

[59]  S. Clemens,et al.  Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. , 2004, The Plant journal : for cell and molecular biology.

[60]  I. Raskin,et al.  Phytoremediation of toxic metals : using plants to clean up the environment , 2000 .

[61]  P. Goldsbrough,et al.  Structure, organization and expression of the metallothionein gene family inArabidopsis , 1995, Molecular and General Genetics MGG.

[62]  N. Terry,et al.  Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. , 2001, Environmental science & technology.

[63]  U. W. Stephan,et al.  Nicotianamine: mediator of transport of iron and heavy metals in the phloem? , 1993 .

[64]  Shioiri,et al.  Nicotianamine chelates both FeIII and FeII. Implications for metal transport in plants , 1999, Plant physiology.

[65]  U. Krämer,et al.  The Role of Free Histidine in Xylem Loading of Nickel inAlyssum lesbiacum and Brassica juncea 1 , 2003, Plant Physiology.

[66]  M J George,et al.  Reduction and coordination of arsenic in Indian mustard. , 2000, Plant physiology.

[67]  I. Raskin,et al.  Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. , 2000, Plant physiology.

[68]  J. Szpunar,et al.  Bio-inorganic speciation analysis by hyphenated techniques. , 2000, The Analyst.

[69]  Alan J. M. Baker,et al.  Phytoremediation Potential of Thlaspi caerulescens and Bladder Campion for Zinc‐ and Cadmium‐Contaminated Soil , 1994 .

[70]  P. Goldsbrough,et al.  Overexpression of Arabidopsis Phytochelatin Synthase Paradoxically Leads to Hypersensitivity to Cadmium Stress1 , 2003, Plant Physiology.

[71]  Y. Hamada,et al.  A New Efficient Synthesis of Nicotianamine and 2'-Deoxymugineic Acid , 1997 .

[72]  P. O. Larsen,et al.  Azetidine-2-carboxylic acid derivatives from seeds of Fagus silvatica L. and a revised structure for nicotianamine , 1974 .

[73]  K. Seifert,et al.  Effect of nicotianamine on iron uptake by the tomato mutant ‘chloronerva’ , 1985 .

[74]  A. J. Friedland,et al.  Role for heavy metals in forest decline indicated by phytochelatin measurements , 1996, Nature.

[75]  J. Andrews,et al.  An X-ray absorption spectroscopic investigation of the nature of the zinc complex accumulated in Datura innoxia plant tissue culture , 2002 .

[76]  J. A. Smith,et al.  Constitutively High Expression of the Histidine Biosynthetic Pathway Contributes to Nickel Tolerance in Hyperaccumulator Plantsw⃞ , 2005, The Plant Cell Online.

[77]  K. Schreiber,et al.  Structure-function relationships of nicotianamine analogues☆ , 1988 .

[78]  William P. Henry Inorganic Chemistry, 3rd ed. (Sharpe, A.G.) , 1993 .

[79]  W. E. Rauser Structure and function of metal chelators produced by plants , 2007, Cell Biochemistry and Biophysics.

[80]  L. Ma,et al.  Thiol synthesis and arsenic hyperaccumulation in Pteris vittata (Chinese brake fern). , 2004, Environmental pollution.

[81]  Ulrich Weser,et al.  The crystal structure of yeast copper thionein: the solution of a long-lasting enigma. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  P. Doran,et al.  Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. , 2003, Journal of biotechnology.

[83]  R. Łobiński,et al.  Speciation analysis of nickel in the latex of a hyperaccumulating tree Sebertia acuminata by HPLC and CZE with ICP MS and electrospray MS-MS detection , 2003 .

[84]  A. Murphy,et al.  Comparison of Metallothionein Gene Expression and Nonprotein Thiols in Ten Arabidopsis Ecotypes (Correlation with Copper Tolerance) , 1995, Plant physiology.

[85]  M. Noma,et al.  A new amino acid, nicotianamine, from tobacco leaves , 1971 .

[86]  L. Kochian,et al.  Physiological Characterization of Root Zn2+ Absorption and Translocation to Shoots in Zn Hyperaccumulator and Nonaccumulator Species of Thlaspi , 1996, Plant physiology.

[87]  S. D. Lindblom,et al.  Selenium protects plants from phloem-feeding aphids due to both deterrence and toxicity. , 2004, The New phytologist.

[88]  A. Memon,et al.  Nature of manganese complexes in manganese accumulator plant. Acanthopanax sciadophylloides , 1984 .

[89]  J. A. Smith,et al.  Secondary Transporters for Nickel and Cobalt Ions: Theme and Variations , 2005, Biometals.

[90]  W. Przybyłowicz,et al.  Phytophagous insects associated with the Ni-hyper- accumulating plant Berkheya coddii (Asteraceae) in Mpumalanga, South Africa , 2001 .

[91]  M Puschenreiter,et al.  Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. , 2003, Environmental pollution.

[92]  M. Ganal,et al.  Genetic analysis of two tomato mutants affected in the regulation of iron metabolism , 1996, Molecular and General Genetics MGG.

[93]  D. E. Salt,et al.  The Role of Metal Transport and Tolerance in Nickel Hyperaccumulation by Thlaspi goesingense Halacsy , 1997, Plant physiology.

[94]  H. Marschner Mineral Nutrition of Higher Plants , 1988 .

[95]  A. Chételat,et al.  Selective and powerful stress gene expression in Arabidopsis in response to malondialdehyde. , 2004, The Plant journal : for cell and molecular biology.

[96]  Joanna Szpunar,et al.  Advances in analytical methodology for bioinorganic speciation analysis: metallomics, metalloproteomics and heteroatom-tagged proteomics and metabolomics. , 2005, The Analyst.

[97]  M. Gautam-Basak,et al.  The saga of copper(II)–l-histidine , 2005 .

[98]  D. Salt,et al.  Increased Glutathione Biosynthesis Plays a Role in Nickel Tolerance in Thlaspi Nickel Hyperaccumulators , 2004, The Plant Cell Online.

[99]  Alan J. M. Baker,et al.  Free histidine as a metal chelator in plants that accumulate nickel , 1996, Nature.