Size versus fairness in the assignment problem

When not all objects are acceptable to all agents, maximizing the number of objects actually assigned is an important design concern. We compute the guaranteed size ratio of the Probabilistic Serial mechanism, i.e., the worst ratio of the actual expected size to the maximal feasible size. It converges decreasingly to 1−1e≃63.2% as the maximal size increases. It is the best ratio of any Envy-Free assignment mechanism.

[1]  Richard M. Karp,et al.  An optimal algorithm for on-line bipartite matching , 1990, STOC '90.

[2]  David Manlove,et al.  Size versus truthfulness in the house allocation problem , 2014, EC.

[3]  M. Utku Ünver,et al.  Two axiomatic approaches to the probabilistic serial mechanism , 2014 .

[4]  M. Pycia,et al.  Ordinal Efficiency, Fairness, and Incentives in Large Markets , 2016 .

[5]  R. Zeckhauser,et al.  The Efficient Allocation of Individuals to Positions , 1979, Journal of Political Economy.

[6]  Paul R. Milgrom,et al.  Designing Random Allocation Mechanisms: Theory and Applications , 2013 .

[7]  Atila Abdulkadiroglu,et al.  RANDOM SERIAL DICTATORSHIP AND THE CORE FROM RANDOM ENDOWMENTS IN HOUSE ALLOCATION PROBLEMS , 1998 .

[8]  Aytek Erdil,et al.  Strategy-proof stochastic assignment , 2014, J. Econ. Theory.

[9]  Sanjeev Khanna,et al.  Social Welfare in One-Sided Matching Markets without Money , 2011, APPROX-RANDOM.

[10]  Bala Kalyanasundaram,et al.  An optimal deterministic algorithm for online b-matching , 1996, Theor. Comput. Sci..

[11]  Jay Sethuraman,et al.  A solution to the random assignment problem on the full preference domain , 2006, J. Econ. Theory.

[12]  Yeon-Koo Che,et al.  Asymptotic Equivalence of Probabilistic Serial and Random Priority Mechanisms , 2008 .

[13]  Atila Abdulkadiroglu,et al.  School Choice: A Mechanism Design Approach , 2003 .

[14]  Shaddin Dughmi,et al.  Truthful assignment without money , 2010, EC '10.

[15]  M. Utku Ünver,et al.  Matching, Allocation, and Exchange of Discrete Resources , 2009 .

[16]  David Manlove,et al.  Finding large stable matchings , 2009, JEAL.

[17]  H. Moulin,et al.  A simple random assignment problem with a unique solution , 2002 .

[18]  Anna Bogomolnaia,et al.  Random assignment: Redefining the serial rule , 2015, J. Econ. Theory.

[19]  Hervé Moulin,et al.  A New Solution to the Random Assignment Problem , 2001, J. Econ. Theory.

[20]  Hervé Moulin,et al.  Scheduling with Opting Out: Improving upon Random Priority , 2001, Oper. Res..

[21]  M. Utku Ünver,et al.  The “Boston” school-choice mechanism: an axiomatic approach , 2014 .

[22]  Eun Jeong Heo,et al.  Probabilistic Assignment of Objects: Characterizing the Serial Rule , 2011, J. Econ. Theory.

[23]  Claire Mathieu,et al.  On-line bipartite matching made simple , 2008, SIGA.

[24]  Moshe Tennenholtz,et al.  Approximate mechanism design without money , 2009, EC '09.

[25]  Ian L. Gale,et al.  Assigning Resources to Budget-Constrained Agents , 2013 .

[26]  David Manlove,et al.  Algorithmics of Matching Under Preferences , 2013, Bull. EATCS.