Zebrafish as a model for myelopoiesis during embryogenesis.

[1]  L. Zon,et al.  Zebrafish scl functions independently in hematopoietic and endothelial development. , 2005, Developmental biology.

[2]  L. Zon,et al.  tp53 mutant zebrafish develop malignant peripheral nerve sheath tumors. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[3]  L. Zon,et al.  Derivation of Hematopoietic Stem Cells from Embryonic Stem Cells. , 2004 .

[4]  L. Zon,et al.  Inhibition of Retinoic Acid Signaling by the cdx-hox Pathway Is Essential for Blood Cell Formation during Embryogenesis. , 2004 .

[5]  B. Paw,et al.  The pu.1 promoter drives myeloid gene expression in zebrafish. , 2004, Blood.

[6]  D. Ransom,et al.  The Zebrafish moonshine Gene Encodes Transcriptional Intermediary Factor 1γ, an Essential Regulator of Hematopoiesis , 2004, PLoS biology.

[7]  K. Clark,et al.  Transposon vectors for gene‐trap insertional mutagenesis in vertebrates , 2004, Genesis.

[8]  B. Paw,et al.  The zebrafish spi1 promoter drives myeloid-specific expression in stable transgenic fish. , 2003, Blood.

[9]  L. Zon,et al.  cdx4 mutants fail to specify blood progenitors and can be rescued by multiple hox genes , 2003, Nature.

[10]  Leonard I. Zon,et al.  Cancer genetics and drug discovery in the zebrafish , 2003, Nature Reviews Cancer.

[11]  J. Postlethwait,et al.  Cell-specific mitotic defect and dyserythropoiesis associated with erythroid band 3 deficiency , 2003, Nature Genetics.

[12]  A. Brownlie,et al.  Characterization of embryonic globin genes of the zebrafish. , 2003, Developmental biology.

[13]  David M Langenau,et al.  Myc-Induced T Cell Leukemia in Transgenic Zebrafish , 2003, Science.

[14]  L. Zon,et al.  Isolation and characterization of runxa and runxb, zebrafish members of the runt family of transcriptional regulators. , 2002, Experimental hematology.

[15]  J. Eisen,et al.  Headwaters of the zebrafish — emergence of a new model vertebrate , 2002, Nature Reviews Genetics.

[16]  B. Weinstein,et al.  In vivo imaging of embryonic vascular development using transgenic zebrafish. , 2002, Developmental biology.

[17]  G. Sauvageau,et al.  Deregulated expression of HOXB4 enhances the primitive growth activity of human hematopoietic cells. , 2002, Blood.

[18]  R. Plasterk,et al.  Target-Selected Inactivation of the Zebrafish rag1 Gene , 2002, Science.

[19]  R. Ho,et al.  Zebrafish SPI-1 (PU.1) marks a site of myeloid development independent of primitive erythropoiesis: implications for axial patterning. , 2002, Developmental biology.

[20]  Nancy Hopkins,et al.  Insertional mutagenesis in zebrafish rapidly identifies genes essential for early vertebrate development , 2002, Nature Genetics.

[21]  F. Liu,et al.  Cloning and expression pattern of the lysozyme C gene in zebrafish , 2002, Mechanisms of Development.

[22]  Carl W. Miller,et al.  Mutations in the gene encoding the transcription factor CCAAT/enhancer binding protein alpha in myelodysplastic syndromes and acute myeloid leukemias. , 2002, Blood.

[23]  D. Ransom,et al.  Non-cell autonomous requirement for the bloodless gene in primitive hematopoiesis of zebrafish. , 2002, Development.

[24]  L. Zon,et al.  Molecular cloning, genetic mapping, and expression analysis of four zebrafish c/ebp genes. , 2001, Gene.

[25]  A. Oates,et al.  Morphologic and functional characterization of granulocytes and macrophages in embryonic and adult zebrafish. , 2001, Blood.

[26]  B. Paw,et al.  Myelopoiesis in the zebrafish, Danio rerio. , 2001, Blood.

[27]  M. Brand,et al.  Morpholino‐induced knockdown of Fgf8 efficiently phenocopies the acerebellar (ACE) phenotype , 2001, Genesis.

[28]  D. Stemple,et al.  Morpholino phenocopies of sqt, oep, and ntl mutations , 2001, Genesis.

[29]  Z. Lele,et al.  Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations , 2001, Genesis.

[30]  L. Zon,et al.  Fishing for lymphoid genes. , 2001, Trends in immunology.

[31]  L. Zon,et al.  A novel myeloid-restricted zebrafish CCAAT/enhancer-binding protein with a potent transcriptional activation domain. , 2001, Blood.

[32]  Pu Zhang,et al.  Dominant-negative mutations of CEBPA, encoding CCAAT/enhancer binding protein-α (C/EBPα), in acute myeloid leukemia , 2001, Nature Genetics.

[33]  N. Bols,et al.  Production of zebrafish germ-line chimeras from embryo cell cultures , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Thomas N. Sato,et al.  Universal GFP reporter for the study of vascular development , 2000, Genesis.

[35]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[36]  Katsuya Yamamoto,et al.  Expression of the NUP98/HOXA9 fusion transcript in the blast crisis of Philadelphia chromosome‐positive chronic myelogenous leukaemia with t(7;11)(p15;p15) , 2000, British journal of haematology.

[37]  W. Talbot,et al.  Zebrafish mutations and functional analysis of the vertebrate genome. , 2000, Genes & development.

[38]  B. Paw,et al.  Zebrafish: a genetic approach in studying hematopoiesis. , 2000, Current opinion in hematology.

[39]  L. Zon,et al.  Dissecting hematopoiesis and disease using the zebrafish. , 1999, Developmental biology.

[40]  Shuo Lin,et al.  Artificial chromosome transgenesis reveals long-distance negative regulation of rag1 in zebrafish , 1999, Nature Genetics.

[41]  A. Amsterdam,et al.  A large-scale insertional mutagenesis screen in zebrafish. , 1999, Genes & development.

[42]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[43]  S. Amacher Transcriptional regulation during zebrafish embryogenesis. , 1999, Current opinion in genetics & development.

[44]  B. Thisse,et al.  Ontogeny and behaviour of early macrophages in the zebrafish embryo. , 1999, Development.

[45]  C. Amemiya,et al.  Generation of a zebrafish P1 artificial chromosome library. , 1999, Genomics.

[46]  J. Dick,et al.  Bone Morphogenetic Proteins Regulate the Developmental Program of Human Hematopoietic Stem Cells , 1999, The Journal of experimental medicine.

[47]  A. Zapata,et al.  Early hematopoiesis and developing lymphoid organs in the zebrafish , 1999, Developmental dynamics : an official publication of the American Association of Anatomists.

[48]  M. Asashima,et al.  Blood cell induction in Xenopus animal cap explants: Effects of fibroblast growth factor, bone morphogenetic proteins, and activin , 1999, Development Genes and Evolution.

[49]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[50]  B. Göttgens,et al.  The SCL gene specifies haemangioblast development from early mesoderm , 1998, The EMBO journal.

[51]  D. Tenen,et al.  CCAAT/Enhancer Binding Protein α Is a Regulatory Switch Sufficient for Induction of Granulocytic Development from Bipotential Myeloid Progenitors , 1998, Molecular and Cellular Biology.

[52]  A. Amores,et al.  The cloche and spadetail genes differentially affect hematopoiesis and vasculogenesis. , 1998, Developmental biology.

[53]  L. Zon,et al.  Transcriptional regulation of blood formation during Xenopus development. , 1998, Seminars in immunology.

[54]  J. Postlethwait,et al.  SCL/Tal-1 transcription factor acts downstream of cloche to specify hematopoietic and vascular progenitors in zebrafish. , 1998, Genes & development.

[55]  L. Zon,et al.  Molecular insights into early hematopoiesis , 1998, Current opinion in hematology.

[56]  S. Orkin,et al.  Unsuspected role for the T-cell leukemia protein SCL/tal-1 in vascular development. , 1998, Genes & development.

[57]  M. Farrell,et al.  GATA-1 expression pattern can be recapitulated in living transgenic zebrafish using GFP reporter gene. , 1997, Development.

[58]  D. Tenen,et al.  CCAAT/enhancer binding protein epsilon is preferentially up-regulated during granulocytic differentiation and its functional versatility is determined by alternative use of promoters and differential splicing. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J. Summerton,et al.  Morpholino and phosphorothioate antisense oligomers compared in cell-free and in-cell systems. , 1997, Antisense & nucleic acid drug development.

[60]  G. Sauvageau,et al.  Mice bearing a targeted interruption of the homeobox gene HOXA9 have defects in myeloid, erythroid, and lymphoid hematopoiesis. , 1997, Blood.

[61]  R. Patient,et al.  A graded response to BMP-4 spatially coordinates patterning of the mesoderm and ectoderm in the zebrafish , 1997, Mechanisms of Development.

[62]  D. Tenen,et al.  Absence of granulocyte colony-stimulating factor signaling and neutrophil development in CCAAT enhancer binding protein alpha-deficient mice. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[63]  D. Stainier,et al.  The zebrafish gene cloche acts upstream of a flk-1 homologue to regulate endothelial cell differentiation. , 1997, Development.

[64]  U. Thorsteinsdóttir,et al.  Overexpression of HOXA10 in murine hematopoietic cells perturbs both myeloid and lymphoid differentiation and leads to acute myeloid leukemia , 1997, Molecular and cellular biology.

[65]  D A Kane,et al.  The identification of genes with unique and essential functions in the development of the zebrafish, Danio rerio. , 1996, Development.

[66]  D A Kane,et al.  Characterization of zebrafish mutants with defects in embryonic hematopoiesis. , 1996, Development.

[67]  A. Schier,et al.  Hematopoietic mutations in the zebrafish. , 1996, Development.

[68]  A. Schier,et al.  A genetic screen for mutations affecting embryogenesis in zebrafish. , 1996, Development.

[69]  A. Feeney,et al.  Targeted disruption of the PU.1 gene results in multiple hematopoietic abnormalities. , 1996, The EMBO journal.

[70]  A. Medvinsky,et al.  Definitive Hematopoiesis Is Autonomously Initiated by the AGM Region , 1996, Cell.

[71]  F. Alt,et al.  The T Cell Leukemia Oncoprotein SCL/tal-1 Is Essential for Development of All Hematopoietic Lineages , 1996, Cell.

[72]  A. Feinberg,et al.  Fusion of the nucleoporin gene NUP98 to HOXA9 by the chromosome translocation t(7;11)(p15;p15) in human myeloid leukaemia , 1996, Nature Genetics.

[73]  D. Ransom,et al.  Intraembryonic hematopoietic cell migration during vertebrate development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[74]  L. Zon,et al.  Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. , 1995, Development.

[75]  C. Begley,et al.  Absence of yolk sac hematopoiesis from mice with a targeted disruption of the scl gene. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[76]  S. Orkin,et al.  Absence of blood formation in mice lacking the T-cell leukaemia oncoprotein tal-1/SCL , 1995, Nature.

[77]  E. Scott,et al.  Requirement of transcription factor PU.1 in the development of multiple hematopoietic lineages. , 1994, Science.

[78]  C. Lin,et al.  Human plastin genes. Comparative gene structure, chromosome location, and differential expression in normal and neoplastic cells. , 1993, The Journal of biological chemistry.

[79]  C. Lin,et al.  Characterization of the human L-plastin gene promoter in normal and neoplastic cells. , 1993, The Journal of biological chemistry.

[80]  J. Visvader,et al.  Molecular cloning and chromosomal localization of the murine homolog of the human helix-loop-helix gene SCL. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[81]  A. Carroll,et al.  The tal gene undergoes chromosome translocation in T cell leukemia and potentially encodes a helix‐loop‐helix protein. , 1990, The EMBO journal.

[82]  P. Nowell,et al.  Involvement of the TCL5 gene on human chromosome 1 in T-cell leukemia and melanoma. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[83]  J. Allen Vertebrate blood cells. , 1989 .

[84]  G. Streisinger,et al.  Production of clones of homozygous diploid zebra fish (Brachydanio rerio) , 1981, Nature.

[85]  M. Moore,et al.  Role of stem cell migration in initiation of mouse foetal liver haemopoiesis , 1975, Nature.

[86]  M. Moore,et al.  Ontogeny of the Haemopoietic System: Yolk Sac Origin of In Vivo and In Vitro Colony Forming Cells in the Developing Mouse Embryo * , 1970, British journal of haematology.

[87]  A. Look,et al.  Interplay of pu.1 and gata1 determines myelo-erythroid progenitor cell fate in zebrafish. , 2005, Developmental cell.

[88]  L. Zon,et al.  Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. , 2005, Developmental cell.

[89]  Suzanne Grindley,et al.  Characterization of expanded intermediate cell mass in zebrafish chordin morphant embryos. , 2005, Developmental biology.

[90]  L. Zon,et al.  Ontogeny of hematopoiesis: examining the emergence of hematopoietic cells in the vertebrate embryo. , 2003, Current topics in developmental biology.

[91]  K. Detmer,et al.  Bone morphogenetic proteins act synergistically with haematopoietic cytokines in the differentiation of haematopoietic progenitors. , 2002, Cytokine.

[92]  L. Zon,et al.  Vascular and blood gene expression. , 1999, Methods in cell biology.

[93]  U. Thorsteinsdóttir,et al.  Overexpression of HOXB3 in hematopoietic cells causes defective lymphoid development and progressive myeloproliferation. , 1997, Immunity.

[94]  N. Ueno,et al.  Conservation of BMP signaling in zebrafish mesoderm patterning , 1997, Mechanisms of Development.

[95]  A. Zapata,et al.  Ultrastructural study of the teleost fish kidney. , 1979, Developmental and comparative immunology.