Searches for neutrinos in the direction of radio-bright blazars with the ANTARES telescope

Active galaxies, especially blazars, are among the most promising neutrino source candidates. To date, ANTARES searches for these objects considered GeV-TeV $\gamma$-ray bright blazars. Here, a statistically complete radio-bright blazar sample is used as the target for searches of origins of neutrinos collected by the ANTARES neutrino telescope over 13 years of operation. The hypothesis of a neutrino-blazar directional correlation is tested by pair counting and by a complementary likelihood-based approach. The resulting post-trial $p$-value is $3.0\%$ ($2.2\sigma$ in the two-sided convention), possibly indicating a correlation. Additionally, a time-dependent analysis is performed to search for temporal clustering of neutrino candidates as a mean of detecting neutrino flares in blazars. None of the investigated sources alone reaches a significant flare detection level. However, the presence of 18 sources with a pre-trial significance above $3\sigma$ indicates a $p=1.4\%$ ($2.5\sigma$ in the two-sided convention) detection of a time-variable neutrino flux. An \textit{a posteriori} investigation reveals an intriguing temporal coincidence of neutrino, radio, and $\gamma$-ray flares of the J0242+1101 blazar at a $p=0.5\%$ ($2.9\sigma$ in the two-sided convention) level. Altogether, the results presented here suggest a possible connection of neutrino candidates detected by the ANTARES telescope with radio-bright blazars.

Curtis N. James | A. Heijboer | L. Haegel | F. Huang | U. Katz | H. Glotin | Y. Tayalati | S. Basa | S. Troitsky | P. Gay | A. Readhead | Y. Kovalev | Y. Hello | J. Carr | B. Vallage | M. Circella | A. Coleiro | D. Dornic | V. Kulikovskiy | M. Lamoureux | P. Jong | B. Baret | S. Ardid | V. Pavlidou | S. Kiehlmann | I. Liodakis | S. Hallmann | S. Zavatarelli | G. Riccobene | J. Brunner | R. Lahmann | R. Moursli | M. Perrin-Terrin | S. Loucatos | A. Marinelli | S. Biagi | R. Bruijn | A. Albert | J. Aubert | Y. Becherini | M. Bouwhuis | R. Coniglione | C. Distefano | K. Graf | M. Jong | A. Kouchner | M. Marcelin | A. Margiotta | E. Nezri | P. Piattelli | V. Popa | T. Pradier | N. Randazzo | D. Real | P. Sapienza | M. Spurio | T. Stolarczyk | M. Taiuti | J. Zornoza | T. Chiarusi | E. Leonora | V. Elewyck | M. Kadler | J. Busto | T. Eberl | I. Kreykenbohm | M. Ardid | O. Kalekin | C. Donzaud | H. Haren | D. Samtleben | A. Creusot | D. Drouhin | P. Migliozzi | J. Schnabel | D. Vivolo | B. Caiffi | S. Celli | L. Fusco | G. Illuminati | A. Moussa | M. Sanguineti | D. Calvo | F. Greus | F. Schussler | J. Schumann | B. Belhorma | Y. Kovalev | A. Plavin | J. Aublin | J. Hossl | S. Tingay | F. Benfenati | M. Bendahman | J. Boumaaza | M. Bouta | V. Carretero | M. Chabab | J. Coelho | A. Domi | A. Enzenhofer | P. Fermani | G. Ferrara | N. Geisselbrecht | C. Guidi | J. Hofestadt | D. López-Coto | L. Maderer | R. Muller | B. Fearraigh | A. Puaun | G. E. Puavualacs | V. Pestel | C. Poirè | S. Reck | A. Romanov | J. Seneca | G. Vannoye | S. Viola | A. Zegarelli | M. Bissinger | G. Levi | H. Branzacs | N. Khayati | R. G. Ruiz | J. Manczak | F. Filippini | S. Alves | L. Caramete | P. Coyle | R. Gozzini | B. Jisse-Jung | S. Navas | J. Wilms | S. Campion | B. Martino | A. Capone | J. Antonio García | V. Bertin | A. Cruz | I. D. Palma | T. V. Eeden | S. L. Stum | S. Gagliardini | A. Saina | S. Hedri | F. Carenini | L. Cerisy | A. D'iaz | D. V. Eijk | C. G. Oliver | A. Lazo | E. Oukacha | D. Lefèvre | A. Pushkarev | M. Andr'e | J. J. Hern'andez-Rey | J. A. Mart'inez-Mora | S. Pena-Mart'inez | A. S{ánchez-Losa | J. Z'uniga | O. C. T. Hovatta | A. S'anchez-Losa | S. Troitsky

[1]  I. C. Rea,et al.  Observation of high-energy neutrinos from the Galactic plane , 2023, Science.

[2]  M. Ajello,et al.  Extragalactic neutrino factories , 2023, 2305.11263.

[3]  N. M. Amin,et al.  Search for Correlations of High-energy Neutrinos Detected in IceCube with Radio-bright AGN and Gamma-Ray Emission from Blazars , 2023, The Astrophysical Journal.

[4]  N. M. Amin,et al.  IceCat-1: The IceCube Event Catalog of Alert Tracks , 2023, The Astrophysical Journal Supplement Series.

[5]  J. Scargle,et al.  The Fermi-LAT Lightcurve Repository , 2023, The Astrophysical Journal Supplement Series.

[6]  A. Heijboer,et al.  Hint for a TeV neutrino emission from the Galactic Ridge with ANTARES , 2022, Physics Letters B.

[7]  N. S. Gorshkov,et al.  Diffuse neutrino flux measurements with the Baikal-GVD neutrino telescope , 2022, Physical Review D.

[8]  Y. Kovalev,et al.  Growing evidence for high-energy neutrinos originating in radio blazars , 2022, Monthly Notices of the Royal Astronomical Society.

[9]  A. A. Alves,et al.  Constraints on Populations of Neutrino Sources from Searches in the Directions of IceCube Neutrino Alerts , 2022, The Astrophysical Journal.

[10]  S. Troitsky,et al.  Galactic Contribution to the High-energy Neutrino Flux Found in Track-like IceCube Events , 2022, The Astrophysical Journal Letters.

[11]  M. Ajello,et al.  Beginning a Journey Across the Universe: The Discovery of Extragalactic Neutrino Factories , 2022, The Astrophysical Journal Letters.

[12]  Matthew Fu,et al.  Multiwavelength and Multimessenger Observations of Blazars and Theoretical Modeling: Blazars as Astrophysical Neutrino Sources , 2022, Acta Physica Polonica B, Proceedings Supplement.

[13]  I. Bartos,et al.  Multiwavelength Search for the Origin of IceCube's Neutrinos , 2022, The Astrophysical Journal.

[14]  J. C. D'iaz-V'elez,et al.  Improved Characterization of the Astrophysical Muon-neutrino Flux with 9.5 Years of IceCube Data , 2021 .

[15]  M. Lister,et al.  A decade of joint MOJAVE-Fermi AGN monitoring: localisation of the gamma-ray emission region , 2021, 2106.08416.

[16]  A. Heijboer,et al.  ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis , 2020, The Astrophysical Journal.

[17]  T. B. Watson,et al.  IceCube high-energy starting event sample: Description and flux characterization with 7.5 years of data , 2020, Physical Review D.

[18]  A. Readhead,et al.  Association of IceCube neutrinos with radio sources observed at Owens Valley and Metsähovi Radio Observatories , 2020, Astronomy & Astrophysics.

[19]  S. Troitsky,et al.  Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars , 2020 .

[20]  Leonid Petrov,et al.  The Wide-field VLBA Calibrator Survey: WFCS , 2020, The Astronomical Journal.

[21]  P. Giommi,et al.  Dissecting the regions around IceCube high-energy neutrinos: growing evidence for the blazar connection , 2020, 2001.09355.

[22]  S. Troitsky,et al.  Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of Radio-bright Active Galaxies , 2020, The Astrophysical Journal.

[23]  M. Huber Searches for steady neutrino emission from 3FHL blazars using eight years of IceCube data from the Northern hemisphere , 2019, International Conference on Rebooting Computing.

[24]  L. Fusco,et al.  Study of the high-energy neutrino diffuse flux with the ANTARES neutrino telescope , 2019, International Conference on Rebooting Computing.

[25]  T. B. Watson,et al.  Search for Sources of Astrophysical Neutrinos Using Seven Years of IceCube Cascade Events , 2019, The Astrophysical Journal.

[26]  F. Schinzel,et al.  The Fourth Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope , 2019, The Astrophysical Journal.

[27]  A. Heijboer,et al.  ANTARES Neutrino Search for Time and Space Correlations with IceCube High-energy Neutrino Events , 2019, The Astrophysical Journal.

[28]  M. Boettcher Progress in Multi-Wavelength and Multi-Messenger Observations of Blazars and Theoretical Challenges , 2019, Galaxies.

[29]  S. Horiuchi,et al.  The Second LBA Calibrator Survey of southern compact extragalactic radio sources – LCS2 , 2018, Monthly Notices of the Royal Astronomical Society.

[30]  T. B. Watson,et al.  Joint Constraints on Galactic Diffuse Neutrino Emission from the ANTARES and IceCube Neutrino Telescopes , 2018, The Astrophysical Journal.

[31]  William H. Lee,et al.  Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2018, Science.

[32]  I. collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert , 2018, Science.

[33]  A. Heijboer,et al.  All-flavor Search for a Diffuse Flux of Cosmic Neutrinos with Nine Years of ANTARES Data , 2017, 1711.07212.

[34]  C. Haack,et al.  A measurement of the diffuse astrophysical muon neutrino flux using eight years of IceCube data. , 2017 .

[35]  C. Kopper Observation of Astrophysical Neutrinos in Six Years of IceCube Data , 2017 .

[36]  A. Heijboer,et al.  First all-flavor neutrino pointlike source search with the ANTARES neutrino telescope , 2017, 1706.01857.

[37]  Napoli,et al.  New constraints on all flavor Galactic diffuse neutrino emission with the ANTARES telescope , 2017, 1705.00497.

[38]  T. Gaisser,et al.  Neutrino Astronomy: Current Status, Future Prospects , 2017 .

[39]  J. Lovell,et al.  VLBI Ecliptic Plane Survey: VEPS-1 , 2017, 1701.07287.

[40]  C. Jacobs,et al.  SECOND EPOCH VLBA CALIBRATOR SURVEY OBSERVATIONS: VCS-II , 2016, The Astronomical journal.

[41]  K. Murase Active Galactic Nuclei as High-Energy Neutrino Sources , 2015, 1511.01590.

[42]  A. Neronov,et al.  Evidence the Galactic contribution to the IceCube astrophysical neutrino flux , 2015, 1509.03522.

[43]  A. Heijboer,et al.  Search for muon-neutrino emission from GeV and TeV gamma-ray flaring blazars using five years of data of the ANTARES telescope , 2015, 1506.07354.

[44]  F. Schinzel,et al.  NEW ASSOCIATIONS OF GAMMA-RAY SOURCES FROM THE FERMI SECOND SOURCE CATALOG , 2014, 1408.6217.

[45]  T Meures,et al.  Observation of High-Energy Astrophysical Neutrinos in Three Years of IceCube Data , 2014, 1405.5303.

[46]  B. Piner,et al.  RELATIVISTIC JETS IN THE RADIO REFERENCE FRAME IMAGE DATABASE. II. BLAZAR JET ACCELERATIONS FROM THE FIRST 10 YEARS OF DATA (1994–2003) , 2012, 1208.4399.

[47]  Y. Kovalev,et al.  Single-epoch VLBI imaging study of bright active galactic nuclei at 2 GHz and 8 GHz , 2012, 1205.5559.

[48]  B. Lott,et al.  An adaptive-binning method for generating constant-uncertainty/constant-significance light curves with Fermi-LAT data , 2012, 1201.4851.

[49]  Leonid Petrov,et al.  The EVN Galactic Plane Survey – EGaPS , 2011, 1106.4883.

[50]  E. Fomalont,et al.  THE VERY LONG BASELINE ARRAY GALACTIC PLANE SURVEY—VGaPS , 2011 .

[51]  A. Collaboration ANTARES: The first undersea neutrino telescope , 2011, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.

[52]  L. Petrov THE CATALOG OF POSITIONS OF OPTICALLY BRIGHT EXTRAGALACTIC RADIO SOURCES OBRS-1 , 2011, 1301.5407.

[53]  Chris Phillips,et al.  The LBA Calibrator Survey of Southern Compact Extragalactic Radio Sources - LCS1 , 2010, 1012.2607.

[54]  K. Grainge,et al.  BLAZARS IN THE FERMI ERA: THE OVRO 40 m TELESCOPE MONITORING PROGRAM , 2010, 1011.3111.

[55]  M. Lister,et al.  RADIO/GAMMA-RAY TIME DELAY IN THE PARSEC-SCALE CORES OF ACTIVE GALACTIC NUCLEI , 2010, 1006.1867.

[56]  J. Dumm,et al.  Time-Dependent Point Source Search Methods in High Energy Neutrino Astronomy , 2009, 0912.1572.

[57]  Leonid Petrov,et al.  Precise geodesy with the Very Long Baseline Array , 2008, 0806.0167.

[58]  E. Fomalont,et al.  THE SIXTH VLBA CALIBRATOR SURVEY: VCS6 , 2008, 0801.3895.

[59]  A. Marscher,et al.  Relativistic Jets in Active Galactic Nuclei , 2006 .

[60]  E. Fomalont,et al.  The Fourth VLBA Calibrator Survey - VCS4 , 2005, astro-ph/0508506.

[61]  D. MacMillan,et al.  The Second VLBA Calibrator Survey: VCS2 , 2003 .

[62]  E. Fomalont,et al.  The VLBA Calibrator Survey—VCS1 , 2002, astro-ph/0201414.

[63]  D. Eichler High-energy neutrino astronomy: A probe of galactic nuclei , 1979 .

[64]  L. Petrov THE CATALOG OF POSITIONS OF OPTICALLY BRIGHT EXTRAGALACTIC RADIO SOURCES OBRS–2 , 2013 .

[65]  L. P. Etrov The Fifth Vlba Calibrator Survey: Vcs5 , 2006 .

[66]  Y. Kovalev,et al.  THE THIRD VLBA CALIBRATOR SURVEY — VCS3 , 2004 .

[67]  V. S. Beresinsky Extraterrestrial Neutrino Sources and High Energy Neutrino Astrophysics , 1978 .