Annealing Temperature Effect on Tribocorrosion and Biocompatibility Properties of TiO2 Nanotubes

[1]  I. Yeo Modifications of Dental Implant Surfaces at the Micro- and Nano-Level for Enhanced Osseointegration , 2019, Materials.

[2]  K. Popat,et al.  Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation. , 2019, Materials science & engineering. C, Materials for biological applications.

[3]  C. Aparicio,et al.  Nano-scale modification of titanium implant surfaces to enhance osseointegration. , 2019, Acta biomaterialia.

[4]  K. Popat,et al.  Effects of calcium and phosphorus incorporation on the properties and bioactivity of TiO2 nanotubes , 2018, Journal of biomaterials applications.

[5]  K. Gulati,et al.  Understanding and augmenting the stability of therapeutic nanotubes on anodized titanium implants. , 2018, Materials science & engineering. C, Materials for biological applications.

[6]  Yu Fu,et al.  A Review on the Electrochemically Self-organized Titania Nanotube Arrays: Synthesis, Modifications, and Biomedical Applications , 2018, Nanoscale Research Letters.

[7]  J. Celis,et al.  Improved tribocorrosion performance of bio-functionalized TiO2 nanotubes under two-cycle sliding actions in artificial saliva. , 2018, Journal of the mechanical behavior of biomedical materials.

[8]  P. Soares,et al.  Mechanical and Tribological Properties of Ca/P-Doped Titanium Dioxide Layer Produced by Plasma Electrolytic Oxidation: Effects of Applied Voltage and Heat Treatment , 2018 .

[9]  Amy V. Davey The effect of manufacturing techniques on custom-made titanium cranioplasty plates: A pilot study. , 2017, Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery.

[10]  Wenjie Zhang,et al.  Surface thermal oxidation on titanium implants to enhance osteogenic activity and in vivo osseointegration , 2016, Scientific Reports.

[11]  F. Kloss,et al.  Impact of Dental Implant Surface Modifications on Osseointegration , 2016, BioMed research international.

[12]  J. Bell,et al.  Nanoindentation study of the mechanical behavior of TiO2 nanotube arrays , 2015 .

[13]  M. Mozetič,et al.  Titanium nanostructures for biomedical applications , 2015, Nanotechnology.

[14]  A. Sarhan,et al.  Mechanical Property Enhancement of Ti-6Al-4V by Multilayer Thin Solid Film Ti/TiO2 Nanotubular Array Coating for Biomedical Application , 2014, Metallurgical and Materials Transactions A.

[15]  I. González,et al.  Effect of heat treatment on the crystal phase composition, semiconducting properties and photoelectrocatalytic color removal efficiency of TiO2 nanotubes arrays , 2014 .

[16]  J. Celis,et al.  Tribocorrosion behaviour of anodic treated titanium surfaces intended for dental implants , 2013 .

[17]  E. Brown,et al.  Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. , 2013, American journal of physiology. Endocrinology and metabolism.

[18]  E. Stellini,et al.  Nanostructured Surfaces of Dental Implants , 2013, International journal of molecular sciences.

[19]  Wen-Yang Chang,et al.  Nanomechanical properties of array TiO2 nanotubes , 2011 .

[20]  David L. Cochran,et al.  Wound healing around dental implants , 2011 .

[21]  David L. Cochran,et al.  Wound healing around dental implants: Wound healing around dental implants , 2011 .

[22]  K. Kim,et al.  Crystallinity of anodic TiO2 nanotubes and bioactivity. , 2011, Journal of nanoscience and nanotechnology.

[23]  Patrik Schmuki,et al.  TiO2 nanotubes: synthesis and applications. , 2011, Angewandte Chemie.

[24]  A. Yetim Investigation of wear behavior of titanium oxide films, produced by anodic oxidation, on commercially pure titanium in vacuum conditions , 2010 .

[25]  P. Schmuki,et al.  Mechanical properties of anatase and semi-metallic TiO2 nanotubes , 2010 .

[26]  N. Chawla,et al.  Nanomechanics of biocompatible TiO(2) nanotubes by Interfacial Force Microscopy (IFM). , 2009, Journal of the mechanical behavior of biomedical materials.

[27]  Sungho Jin,et al.  Improved bone-forming functionality on diameter-controlled TiO(2) nanotube surface. , 2009, Acta biomaterialia.

[28]  Lars Rasmusson,et al.  Titanium dioxide nanotubes enhance bone bonding in vivo. , 2009, Journal of biomedical materials research. Part A.

[29]  Xiufeng Xiao,et al.  Synthesis and bioactivity of highly ordered TiO2 nanotube arrays , 2008 .

[30]  A. Bandyopadhyay,et al.  Biocompatibility and In Situ Growth of TiO2 Nanotubes on Ti Using Different Electrolyte Chemistry , 2008 .

[31]  P. Chu,et al.  Thermal stability of titania films prepared on titanium by micro-arc oxidation , 2008 .

[32]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[33]  A. Bandyopadhyay,et al.  Microstructure and deformation behavior of biocompatible TiO2 nanotubes on titanium substrate. , 2007, Acta biomaterialia.

[34]  Yong Sun,et al.  Thick rutile layer on titanium for tribological applications , 2007 .

[35]  H. Teng,et al.  Mesoporous nanotube aggregates obtained from hydrothermally treating TiO2 with NaOH , 2006 .

[36]  Sungho Jin,et al.  Titanium oxide nanotubes with controlled morphology for enhanced bone growth , 2006 .

[37]  J. I. Qazi,et al.  Titanium alloys for biomedical applications , 2006 .

[38]  Kaiyong Cai,et al.  Surface functionalized titanium thin films: zeta-potential, protein adsorption and cell proliferation. , 2006, Colloids and surfaces. B, Biointerfaces.

[39]  M. Hon,et al.  Fabrication of aligned TiO2 one-dimensional nanostructured arrays using a one-step templating solution approach. , 2005, The journal of physical chemistry. B.

[40]  M. Tonetti,et al.  Roughness response genes in osteoblasts. , 2004, Bone.

[41]  G. Pharr,et al.  Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology , 2004 .

[42]  T Albrektsson,et al.  The electrochemical oxide growth behaviour on titanium in acid and alkaline electrolytes. , 2001, Medical engineering & physics.

[43]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.

[44]  Koichi Niihara,et al.  Formation of titanium oxide nanotube , 1998 .

[45]  E P Lautenschlager,et al.  Titanium and titanium alloys as dental materials. , 1993, International dental journal.

[46]  H. Myers,et al.  Quantitative Analysis of Anatase-Rutile Mixtures with an X-Ray Diffractometer , 1957 .

[47]  F Rupp,et al.  Surface characteristics of dental implants: A review. , 2018, Dental materials : official publication of the Academy of Dental Materials.

[48]  G. Lewis,et al.  Deposition Methods for Microstructured and Nanostructured Coatings on Metallic Bone Implants: A Review , 2017 .

[49]  P. Layrolle,et al.  Enhanced osseointegration of titanium implants with nanostructured surfaces: an experimental study in rabbits. , 2015, Acta biomaterialia.

[50]  G. Thouas,et al.  Metallic implant biomaterials , 2015 .

[51]  An Ke-yun,et al.  Titanium oxide nanotube arrays prepared by anodic oxidation method and photocatalytic degradation of chloramine phosphorus , 2011 .

[52]  P. Srinivasa Pai,et al.  Significance of Tribocorrosion in Biomedical Applications: Overview and Current Status , 2009 .

[53]  Tadashi Kokubo,et al.  Structural dependence of apatite formation on titania gels in a simulated body fluid. , 2003, Journal of biomedical materials research. Part A.