Development of human cGAS-specific small-molecule inhibitors for repression of dsDNA-triggered interferon expression

[1]  G. Turcatti,et al.  Targeting STING with covalent small-molecule inhibitors , 2018, Nature.

[2]  N. Gray,et al.  Structure of the Human cGAS–DNA Complex Reveals Enhanced Control of Immune Surveillance , 2018, Cell.

[3]  Modi Wang,et al.  Suramin potently inhibits cGAMP synthase, cGAS, in THP1 cells to modulate IFN-β levels. , 2018, Future medicinal chemistry.

[4]  M. Ascano,et al.  Small molecule inhibition of cGAS reduces interferon expression in primary macrophages from autoimmune mice , 2017, Nature Communications.

[5]  D. Lin,et al.  Discovery of PF-06928215 as a high affinity inhibitor of cGAS enabled by a novel fluorescence polarization assay , 2017, PloS one.

[6]  L. Zender,et al.  Innate immune sensing of cytosolic chromatin fragments through cGAS promotes senescence , 2017, Nature Cell Biology.

[7]  Martin A. M. Reijns,et al.  cGAS surveillance of micronuclei links genome instability to innate immunity , 2017, Nature.

[8]  Dennis E Discher,et al.  Mitotic progression following DNA damage enables pattern recognition within micronuclei , 2017, Nature.

[9]  Zhijian J. Chen,et al.  cGAS is essential for cellular senescence , 2017, Proceedings of the National Academy of Sciences.

[10]  D. Bose,et al.  An RNA-Based Fluorescent Biosensor for High-Throughput Analysis of the cGAS-cGAMP-STING Pathway. , 2016, Cell chemical biology.

[11]  G. Hartmann,et al.  Discriminating self from non-self in nucleic acid sensing , 2016, Nature Reviews Immunology.

[12]  C. Steegborn,et al.  Discovery of LRE1 as a specific and allosteric inhibitor of soluble adenylyl cyclase , 2016, Nature chemical biology.

[13]  R. Silverman,et al.  Activation of RNase L is dependent on OAS3 expression during infection with diverse human viruses , 2016, Proceedings of the National Academy of Sciences.

[14]  D. Pisetsky Anti-DNA antibodies — quintessential biomarkers of SLE , 2016, Nature Reviews Rheumatology.

[15]  Zhijian J. Chen,et al.  Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases , 2015, Proceedings of the National Academy of Sciences.

[16]  Elizabeth E Gray,et al.  Cutting Edge: cGAS Is Required for Lethal Autoimmune Disease in the Trex1-Deficient Mouse Model of Aicardi–Goutières Syndrome , 2015, The Journal of Immunology.

[17]  Zhigang Zhang,et al.  Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses , 2015, Proceedings of the National Academy of Sciences.

[18]  H. Virgin,et al.  The Cytosolic Sensor cGAS Detects Mycobacterium tuberculosis DNA to Induce Type I Interferons and Activate Autophagy. , 2015, Cell host & microbe.

[19]  J. An,et al.  Cutting Edge: Antimalarial Drugs Inhibit IFN-β Production through Blockade of Cyclic GMP-AMP Synthase–DNA Interaction , 2015, The Journal of Immunology.

[20]  R. Means,et al.  Mitochondrial DNA Stress Primes the Antiviral Innate Immune Response , 2014, Nature.

[21]  Senlin Li,et al.  The E3 ubiquitin ligase AMFR and INSIG1 bridge the activation of TBK1 kinase by modifying the adaptor STING. , 2014, Immunity.

[22]  T. Decker,et al.  Listeria monocytogenes induces IFNβ expression through an IFI16‐, cGAS‐ and STING‐dependent pathway , 2014, The EMBO journal.

[23]  V. Hornung,et al.  OAS proteins and cGAS: unifying concepts in sensing and responding to cytosolic nucleic acids , 2014, Nature Reviews Immunology.

[24]  G. Barber,et al.  Cytosolic-DNA-Mediated, STING-Dependent Proinflammatory Gene Induction Necessitates Canonical NF-κB Activation through TBK1 , 2014, Journal of Virology.

[25]  Nan Yan,et al.  Cyclic GMP-AMP Synthase Is an Innate Immune Sensor of HIV and Other Retroviruses , 2013, Science.

[26]  Zhijian J. Chen,et al.  Cyclic GMP-AMP containing mixed phosphodiester linkages is an endogenous high-affinity ligand for STING. , 2013, Molecules and Cells.

[27]  V. Hornung,et al.  cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING , 2013, Nature.

[28]  Roger A. Jones,et al.  Cyclic [G(2′,5′)pA(3′,5′)p] Is the Metazoan Second Messenger Produced by DNA-Activated Cyclic GMP-AMP Synthase , 2013, Cell.

[29]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Is an Endogenous Second Messenger in Innate Immune Signaling by Cytosolic DNA , 2013, Science.

[30]  Zhijian J. Chen,et al.  Cyclic GMP-AMP Synthase Is a Cytosolic DNA Sensor That Activates the Type I Interferon Pathway , 2013, Science.

[31]  G. Barber,et al.  STING manifests self DNA-dependent inflammatory disease , 2012, Proceedings of the National Academy of Sciences.

[32]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[33]  J. Hiscott,et al.  Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. , 2011, Current opinion in immunology.

[34]  Sarah E. Ewald,et al.  Nucleic acid recognition by the innate immune system. , 2011, Annual review of immunology.

[35]  J. Baell,et al.  New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. , 2010, Journal of medicinal chemistry.

[36]  G. Barber,et al.  STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity , 2009, Nature.

[37]  Xiaoping Zhou,et al.  ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization , 2009, Proceedings of the National Academy of Sciences.

[38]  T. Mogensen Pathogen Recognition and Inflammatory Signaling in Innate Immune Defenses , 2009, Clinical Microbiology Reviews.

[39]  Y. Li,et al.  The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. , 2008, Immunity.

[40]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[41]  D. Barnes,et al.  Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutières syndrome at the AGS1 locus , 2006, Nature Genetics.

[42]  R. Glen,et al.  Molecular similarity: a key technique in molecular informatics. , 2004, Organic & biomolecular chemistry.

[43]  Conrad C. Huang,et al.  UCSF Chimera—A visualization system for exploratory research and analysis , 2004, J. Comput. Chem..

[44]  T. Okabe,et al.  High-throughput screening with quantitation of ATP consumption: a universal non-radioisotope, homogeneous assay for protein kinase. , 2004, Assay and drug development technologies.

[45]  Phillip Jeffrey,et al.  The Practice of Medicinal Chemistry , 2004 .

[46]  Thomas D. Y. Chung,et al.  A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays , 1999, Journal of biomolecular screening.

[47]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[48]  P. Dansette,et al.  Biotransformations Leading to Toxic Metabolites: Chemical Aspect , 2008 .

[49]  Vincent B. Chen,et al.  Acta Crystallographica Section D Biological , 2001 .