Nonstationary Consistency of Subspace Methods

In this paper, we study ldquononstationary consistencyrdquo of subspace methods for eigenstructure identification, i.e., the ability of subspace algorithms to converge to the true eigenstructure despite nonstationarities in the excitation and measurement noises. Note that such nonstationarities may result in having time-varying zeros for the underlying system, so the problem is nontrivial. In particular, likelihood- and prediction-error related methods do not ensure consistency under such situation, because estimation of poles and estimation of zeros are tightly coupled. We show in turn that subspace methods ensure such consistency. Our study carefully separates statistical from nonstatistical arguments, therefore, enlightening the role of statistical assumptions in this story.

[1]  J. Neveu,et al.  Discrete Parameter Martingales , 1975 .

[2]  P. Hall,et al.  Martingale Limit Theory and Its Application , 1980 .

[3]  W. Larimore System Identification, Reduced-Order Filtering and Modeling via Canonical Variate Analysis , 1983, 1983 American Control Conference.

[4]  A. Benveniste,et al.  Single sample modal identification of a nonstationary stochastic process , 1985, IEEE Transactions on Automatic Control.

[5]  A. Benveniste,et al.  Detecting changes in the ar parameters of a nonstationary arma process , 1986 .

[6]  A. Benveniste,et al.  STATE SPACE FORMULATION : A SOLUTION TO MODAL PARAMETER ESTIMATION , 1991 .

[7]  M. Verhaegen Subspace model identification Part 2. Analysis of the elementary output-error state-space model identification algorithm , 1992 .

[8]  Bart De Moor,et al.  N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems , 1994, Autom..

[9]  Michel Verhaegen,et al.  Identification of the deterministic part of MIMO state space models given in innovations form from input-output data , 1994, Autom..

[10]  Manfred Deistler,et al.  Consistency and relative efficiency of subspace methods , 1994, Autom..

[11]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[12]  B. Moor,et al.  Subspace identification for linear systems , 1996 .

[13]  L. Ljung,et al.  Subspace-based multivariable system identification from frequency response data , 1996, IEEE Trans. Autom. Control..

[14]  Bo Wahlberg,et al.  Analysis of state space system identification methods based on instrumental variables and subspace fitting , 1997, Autom..

[15]  Dietmar Bauer,et al.  Consistency and asymptotic normality of some subspace algorithms for systems without observed inputs , 1999, Autom..

[16]  M. Deistler,et al.  On the Impact of Weighting Matrices in Subspace Algorithms , 2000 .

[17]  Dietmar Bauer,et al.  Analysis of the asymptotic properties of the MOESP type of subspace algorithms , 2000, Autom..

[18]  Maurice Goursat,et al.  Output-Only Subspace-Based Structural Identification: From Theory to Industrial Testing Practice , 2001 .

[19]  Michel Verhaegen,et al.  Subspace identification of multivariable linear parameter-varying systems , 2002, Autom..

[20]  Lennart Ljung,et al.  Some facts about the choice of the weighting matrices in Larimore type of subspace algorithms , 2002, Autom..

[21]  E. Parloo,et al.  Identification of modal parameters including unmeasured forces and transient effects , 2003 .

[22]  Alessandro Chiuso,et al.  Asymptotic variance of subspace methods by data orthogonalization and model decoupling: a comparative analysis , 2004, Autom..

[23]  E. Parloo,et al.  Combined Deterministic-Stochastic Frequency-Domain Subspace Identification for Experimental and Operational Modal Analysis , 2004 .

[24]  Alessandro Chiuso,et al.  Subspace identification by data orthogonalization and model decoupling , 2003, Autom..

[25]  Alessandro Chiuso,et al.  On the ill-conditioning of subspace identification with inputs , 2004, Autom..

[26]  ChiusoAlessandro,et al.  Asymptotic variance of subspace methods by data orthogonalization and model decoupling , 2004 .

[27]  R. Pintelon,et al.  Frequency-domain subspace identification using FRF data from arbitrary signals , 2006 .

[28]  L. Mevel Covariance driven subspace methods : input / output vs output-only 1 Arnaud Guyader , .