Title ChIP-Array 2 : integrating multiple omics data to construct generegulatory networks

Transcription factors (TFs) play an important role in gene regulation. The interconnections among TFs, chromatin interactions, epigenetic marks and cisregulatory elements form a complex gene transcription apparatus. Our previous work, ChIP-Array, combined TF binding and transcriptome data to construct gene regulatory networks (GRNs). Here we present an enhanced version, ChIP-Array 2, to integrate additional types of omics data including long-range chromatin interaction, open chromatin region and histone modification data to dissect more comprehensive GRNs involving diverse regulatory components. Moreover, we substantially extended our motif database for human, mouse, rat, fruit fly, worm, yeast and Arabidopsis, and curated large amount of omics data for users to select as input or backend support. With ChIP-Array 2, we compiled a library containing regulatory networks of 18 TFs/chromatin modifiers in mouse embryonic stem cell (mESC). The web server and the mESC library are publicly free and accessible at http://jjwanglab.org/chip-array.

[1]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[2]  Maureen A. Sartor,et al.  PePr: a peak-calling prioritization pipeline to identify consistent or differential peaks from replicated ChIP-Seq data , 2014, Bioinform..

[3]  Junwen Wang,et al.  Inferring gene regulatory networks by integrating ChIP-seq/chip and transcriptome data via LASSO-type regularization methods. , 2014, Methods.

[4]  Bin Yan,et al.  PTHGRN: unraveling post-translational hierarchical gene regulatory networks using PPI, ChIP-seq and gene expression data , 2014, Nucleic Acids Res..

[5]  Robert Buels,et al.  JBrowse: A Next-Generation Genome Browser , 2014 .

[6]  Michael G. Poirier,et al.  Nucleosomes accelerate transcription factor dissociation , 2013, Nucleic acids research.

[7]  Hanfei Sun,et al.  Target analysis by integration of transcriptome and ChIP-seq data with BETA , 2013, Nature Protocols.

[8]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[9]  Hongkai Ji,et al.  ChIPXpress: using publicly available gene expression data to improve ChIP-seq and ChIP-chip target gene ranking , 2013, BMC Bioinformatics.

[10]  Alexei A. Sharov,et al.  Systematic repression of transcription factors reveals limited patterns of gene expression changes in ES cells , 2013, Scientific Reports.

[11]  Jacques Côté,et al.  Perceiving the epigenetic landscape through histone readers , 2012, Nature Structural &Molecular Biology.

[12]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[13]  P. Laird,et al.  Discovery of multi-dimensional modules by integrative analysis of cancer genomic data , 2012, Nucleic acids research.

[14]  Shi-Hua Zhang,et al.  Identifying multi-layer gene regulatory modules from multi-dimensional genomic data , 2012, Bioinform..

[15]  I. Ellis,et al.  Differential oestrogen receptor binding is associated with clinical outcome in breast cancer , 2011, Nature.

[16]  Jie Zhou,et al.  Discovering transcription factor regulatory targets using gene expression and binding data , 2012, Bioinform..

[17]  Sündüz Keles,et al.  Detecting differential binding of transcription factors with ChIP-seq , 2012, Bioinform..

[18]  Michael Q. Zhang,et al.  EpiRegNet: Constructing epigenetic regulatory network from high throughput gene expression data for humans , 2011, Epigenetics.

[19]  Michael Q. Zhang,et al.  ChIP-Array: combinatory analysis of ChIP-seq/chip and microarray gene expression data to discover direct/indirect targets of a transcription factor , 2011, Nucleic Acids Res..

[20]  Gary D. Bader,et al.  Cytoscape Web: an interactive web-based network browser , 2010, Bioinform..

[21]  Fan Wang,et al.  CisGenome Browser: a flexible tool for genomic data visualization , 2010, Bioinform..

[22]  Cole Trapnell,et al.  Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. , 2010, Nature biotechnology.

[23]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[24]  Herbert Schulz,et al.  A genome-scale RNAi screen for Oct4 modulators defines a role of the Paf1 complex for embryonic stem cell identity. , 2009, Cell stem cell.

[25]  Bertrand Guillotin,et al.  Three LIF-dependent signatures and gene clusters with atypical expression profiles, identified by transcriptome studies in mouse ES cells and early derivatives , 2009, BMC Genomics.

[26]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[27]  Megan F. Cole,et al.  Connecting microRNA Genes to the Core Transcriptional Regulatory Circuitry of Embryonic Stem Cells , 2008, Cell.

[28]  N. D. Clarke,et al.  Integration of External Signaling Pathways with the Core Transcriptional Network in Embryonic Stem Cells , 2008, Cell.

[29]  Inna Dubchak,et al.  VISTA Enhancer Browser—a database of tissue-specific human enhancers , 2006, Nucleic Acids Res..

[30]  Sridhar Hannenhalli,et al.  Transcriptional Genomics Associates FOX Transcription Factors With Human Heart Failure , 2006, Circulation.

[31]  X. Chen,et al.  The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells , 2006, Nature Genetics.

[32]  A. Dean On a chromosome far, far away: LCRs and gene expression. , 2006, Trends in genetics : TIG.

[33]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Rainer Breitling,et al.  Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments , 2004, FEBS letters.

[35]  Gary D. Stormo,et al.  DNA binding sites: representation and discovery , 2000, Bioinform..

[36]  Wiebe Kruijer,et al.  Octamer-dependent regulation of the kFGF gene in embryonal carcinoma and embryonic stem cells , 1991, Mechanisms of Development.