The stochastic trim-loss problem

The cutting stock problem (CSP) is one of the most fascinating problems in operations research. The problem aims at determining the optimal plan to cut a number of parts of various length from an inventory of standard-size material so to satisfy the customers demands. The deterministic CSP ignores the uncertain nature of the demands thus typically providing recommendations that may result in overproduction or in profit loss. This paper proposes a stochastic version of the CSP which explicitly takes into account uncertainty. Using a scenario-based approach, we develop a two-stage stochastic programming formulation. The highly non-convex nature of the model together with its huge size prevent the application of standard software. We use a solution approach designed to exploit the specific problem structure. Encouraging preliminary computational results are provided.

[1]  John E. Mitchell,et al.  An improved branch and bound algorithm for mixed integer nonlinear programs , 1994, Comput. Oper. Res..

[2]  Gerhard Wäscher,et al.  An improved typology of cutting and packing problems , 2007, Eur. J. Oper. Res..

[3]  Bret J. Wagner,et al.  A genetic algorithm solution for one-dimensional bundled stock cutting , 1999, Eur. J. Oper. Res..

[4]  Chuen-Lung Chen,et al.  A simulated annealing heuristic for the one-dimensional cutting stock problem , 1996 .

[5]  Robert Hinterding,et al.  Genetic Algorithms for Cutting Stock Problems: With and Without Contiguity , 1993, Evo Workshops.

[6]  Ignacio E. Grossmann,et al.  An outer-approximation algorithm for a class of mixed-integer nonlinear programs , 1986, Math. Program..

[7]  Harald Dyckhoff,et al.  A New Linear Programming Approach to the Cutting Stock Problem , 1981, Oper. Res..

[8]  Ralf Östermark,et al.  Solving a nonlinear non-convex trim loss problem with a genetic hybrid algorithm , 1999, Comput. Oper. Res..

[9]  Dimitri P. Bertsekas,et al.  Incremental Subgradient Methods for Nondifferentiable Optimization , 2001, SIAM J. Optim..

[10]  Robert W. Haessler Technical Note - A Note on Computational Modifications to the Gilmore-Gomory Cutting Stock Algorithm , 1980, Oper. Res..

[11]  Efstratios N. Pistikopoulos,et al.  Stochastic optimization based algorithms for process synthesis under uncertainty , 1998 .

[12]  R. W. Haessler A Heuristic Programming Solution to a Nonlinear Cutting Stock Problem , 1971 .

[13]  Iiro Harjunkoski,et al.  An extended cutting plane method for a class of non-convex MINLP problems , 1998 .

[14]  Sven Leyffer,et al.  Integrating SQP and Branch-and-Bound for Mixed Integer Nonlinear Programming , 2001, Comput. Optim. Appl..

[15]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[16]  Christodoulos A. Floudas,et al.  Stochastic programming in process synthesis: A two-stage model with MINLP recourse for multiperiod heat-integrated distillation sequences , 1992 .

[17]  Raymond Hemmecke,et al.  Decomposition Methods for Two-Stage Stochastic Integer Programs , 2001 .

[18]  Jiang Xu,et al.  Asymptotic stability of solutions to the nonisentropic hydrodynamic model for semiconductors , 2008 .

[19]  R. Gomory,et al.  A Linear Programming Approach to the Cutting-Stock Problem , 1961 .

[20]  Efstratios N. Pistikopoulos,et al.  Computational studies of stochastic optimization algorithms for process synthesis under uncertainty , 1996 .

[21]  Efstratios N. Pistikopoulos,et al.  A parametric MINLP algorithm for process synthesis problems under uncertainty , 1996 .

[22]  A. M. Geoffrion Generalized Benders decomposition , 1972 .

[23]  Ramón Alvarez-Valdés,et al.  A tabu search algorithm for large-scale guillotine (un)constrained two-dimensional cutting problems , 2002, Comput. Oper. Res..

[24]  John R. Birge,et al.  A Stochastic Programming Approach to the Airline Crew Scheduling Problem , 2006, Transp. Sci..

[25]  Iiro Harjunkoski,et al.  Solving a production optimization problem in a paper-converting mill with MILP , 1998 .

[26]  Iiro Harjunkoski,et al.  Different strategies for solving bilinear integer non-linear programming problems with convex transformations , 1997 .

[27]  Frederick Ducatelle Ant Colony Optimisation for Bin Packing and Cutting Stock Problems , 2001 .

[28]  Lawrence M. Wein,et al.  A Dynamic Stochastic Stock-Cutting Problem , 2015, Oper. Res..

[29]  Harald Dyckhoff,et al.  A typology of cutting and packing problems , 1990 .

[30]  Robert W. Haessler,et al.  Controlling Cutting Pattern Changes in One-Dimensional Trim Problems , 1975, Oper. Res..

[31]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[32]  Nikolaos V. Sahinidis,et al.  Optimization under uncertainty: state-of-the-art and opportunities , 2004, Comput. Chem. Eng..

[33]  Maria Elena Bruni,et al.  Solving Nonlinear Mixed Integer Stochastic Problems: a Global Perspective , 2006 .

[34]  T. Westerlund,et al.  Some Efficient Formulations for the Simultaneous Solution of Trim-Loss and Scheduling Problems in the Paper-Converting Industry , 1998 .

[35]  C. Floudas Handbook of Test Problems in Local and Global Optimization , 1999 .

[36]  Alain Martel,et al.  Roll assortment optimization in a paper mill: An integer programming approach , 2008, Comput. Oper. Res..

[37]  Martin Grötschel,et al.  Online optimization of large scale systems , 2001 .

[38]  J. V. D. Carvalho Exact solution of cutting stock problems using column generation and branch-and-Bound 1 1 Paper pres , 1998 .

[39]  Different formulations for solving trim loss problems in a paper-converting mill with ILP , 1996 .

[40]  Gleb Belov,et al.  A branch-and-cut-and-price algorithm for one-dimensional stock cutting and two-dimensional two-stage cutting , 2006, Eur. J. Oper. Res..

[41]  A. I. Hinxman The trim-loss and assortment problems: A survey , 1980 .

[42]  Gleb Belov,et al.  A cutting plane algorithm for the one-dimensional cutting stock problem with multiple stock lengths , 2002, Eur. J. Oper. Res..

[43]  Iiro Harjunkoski,et al.  Different transformations for solving non-convex trim-loss problems by MINLP , 1998, Eur. J. Oper. Res..

[44]  Jing Wei,et al.  Sample average approximation methods for stochastic MINLPs , 2004, Comput. Chem. Eng..

[45]  Marcos Nereu Arenales,et al.  On the cutting stock problem under stochastic demand , 2010, Ann. Oper. Res..

[46]  Rüdiger Schultz,et al.  Dual decomposition in stochastic integer programming , 1999, Oper. Res. Lett..

[47]  K. Lai,et al.  Developing a simulated annealing algorithm for the cutting stock problem , 1997 .

[48]  John R. Birge,et al.  Introduction to Stochastic Programming , 1997 .

[49]  Pamela H. Vance,et al.  Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem , 1998, Comput. Optim. Appl..

[50]  Gleb Belov,et al.  Solving one-dimensional cutting stock problems exactly with a cutting plane algorithm , 2001, J. Oper. Res. Soc..

[51]  Andrea Matta,et al.  Design of Advanced Manufacturing Systems , 2005 .

[52]  D. Sculli,et al.  A Stochastic Cutting Stock Procedure: Cutting Rolls of Insulating Tape , 1981 .

[53]  Ramón Alvarez-Valdés,et al.  A GRASP algorithm for constrained two-dimensional non-guillotine cutting problems , 2005, J. Oper. Res. Soc..

[54]  N. Maculan,et al.  Global optimization : from theory to implementation , 2006 .