GROWTH on S190425z: Searching Thousands of Square Degrees to Identify an Optical or Infrared Counterpart to a Binary Neutron Star Merger with the Zwicky Transient Facility and Palomar Gattini-IR

The third observing run by LVC has brought the discovery of many compact binary coalescences. Following the detection of the first binary neutron star merger in this run (LIGO/Virgo S190425z), we performed a dedicated follow-up campaign with the Zwicky Transient Facility (ZTF) and Palomar Gattini-IR telescopes. The initial skymap of this single-detector gravitational wave (GW) trigger spanned most of the sky observable from Palomar Observatory. Covering 8000 deg$^2$ of the initial skymap over the next two nights, corresponding to 46\% integrated probability, ZTF system achieved a depth of $\approx$\,21 $m_\textrm{AB}$ in $g$- and $r$-bands. Palomar Gattini-IR covered 2200 square degrees in $J$-band to a depth of 15.5\,mag, including 32\% integrated probability based on the initial sky map. The revised skymap issued the following day reduced these numbers to 21\% for the Zwicky Transient Facility and 19\% for Palomar Gattini-IR. We narrowed 338,646 ZTF transient "alerts" over the first two nights of observations to 15 candidate counterparts. Two candidates, ZTF19aarykkb and ZTF19aarzaod, were particularly compelling given that their location, distance, and age were consistent with the GW event, and their early optical lightcurves were photometrically consistent with that of kilonovae. These two candidates were spectroscopically classified as young core-collapse supernovae. The remaining candidates were ruled-out as supernovae. Palomar Gattini-IR did not identify any viable candidates with multiple detections only after merger time. We demonstrate that even with single-detector GW events localized to thousands of square degrees, systematic kilonova discovery is feasible.

Eugene Serabyn | Daniel A. Goldstein | Anna M. Moore | Kai Staats | Michael C. B. Ashley | Yoichi Yatsu | Richard G. Dekany | David A. H. Buckley | Matthew J. Graham | V. Zach Golkhou | Saurabh W. Jha | Jesper Sollerman | Mansi M. Kasliwal | Eran O. Ofek | Dmitry A. Duev | Tony Travouillon | Harsh Kumar | Jeff Cooke | Moses Mogotsi | Daniel A. Perley | James D. Neill | Eric C. Bellm | Frank J. Masci | David O. Cook | Reed Riddle | G. C. Anupama | Joshua S. Bloom | David L. Shupe | Eleonora Troja | Jorge Mart'inez-Palomera | Sara Frederick | Ben Rusholme | Varun Bhalerao | Mickael Rigault | Ariel Goobar | Alexandre Delacroix | Albert K. H. Kong | Igor Andreoni | Rahul Biswas | Virginia Cunningham | Thomas Kupfer | Chow-Choong Ngeow | Michael W. Coughlin | S. Bradley Cenko | John Cromer | Takashi Horiuchi | David L. Kaplan | Valentina La Parola | Pradip Gatkine | Jamie Soon | Matteo Giomi | Marek Kowalski | Michael Feeney | Leo P. Singer | Po-Chieh Yu | Kishalay De | Tiara Hung | Jacob E. Jencson | Hidekazu Hanayama | Hanjie Tan | Matthew J. Hankins | Kevin B. Burdge | V. R. Karambelkar | M. Graham | J. Neill | E. Ofek | J. Sollerman | J. Bloom | D. Perley | S. Jha | L. Singer | I. Andreoni | R. Biswas | M. Coughlin | K. Staats | M. Kowalski | Shaon Ghosh | D. Goldstein | D. Kaplan | K. De | M. Kasliwal | S. Kulkarni | V. Bhalerao | E. Bellm | C. Copperwheat | S. Cenko | A. Goobar | S. Anand | P. Mazzali | M. Rigault | E. Serabyn | R. Dekany | C. Ngeow | F. Masci | K. Burdge | D. Duev | V. Golkhou | T. Hung | S. Frederick | T. Kupfer | R. Riddle | B. Rusholme | D. Shupe | J. Jencson | E. Troja | Anirban Dutta | Kirsty Taggart | D. Cook | P. Yu | G. Anupama | Y. Yatsu | H. Hanayama | M. Feeney | V. Cunningham | A. Moore | J. Cooke | M. Ashley | A. Kong | D. Buckley | V. Parola | S. Dichiara | J. Cromer | Paolo Mazzali | Shrinivas R. Kulkarni | T. Travouillon | M. Giomi | Shaon Ghosh | M. Pavana | Y. Sharma | A. Dugas | A. Bagdasaryan | P. Gatkine | A. Delacroix | V. Karambelkar | Tom'as Ahumada | Shreya Anand | Christopher M. Copperwheat | Alison M. Dugas | Ashot Bagdasaryan | Antonino D'a'i | Simone Dichiara | Anirban Dutta | M. Pavana | Atharva Sunil Patil | Yashvi Sharma | Kirsty Taggart | Gaurav Waratkar | T. Ahumada | H. Kumar | M. Hankins | J. Soon | A. D'A'i | Takashi Horiuchi | M. Mogotsi | J. Mart'inez-Palomera | A. Patil | H. Tan | G. Waratkar | S. Kulkarni | Atharva Patil | S. Kulkarni

[1]  W. Ip,et al.  LIGO/Virgo S190425z: Lulin Follow-Up Observations. , 2019 .

[2]  B. Metzger,et al.  Kilonovae , 2016, Living Reviews in Relativity.

[3]  Xiaohui Fan,et al.  LIGO/Virgo S190425z: GRAWITA LBT spectroscopic observations. , 2019 .

[4]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[5]  P. Schipani,et al.  Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger , 2017, Nature.

[6]  Michael P. Smith,et al.  The prime focus imaging spectrograph for the Southern African Large Telescope: structural and mechanical design and commissioning , 2001, SPIE Astronomical Telescopes + Instrumentation.

[7]  B. A. Boom,et al.  GWTC-1: A Gravitational-Wave Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo during the First and Second Observing Runs , 2018 .

[8]  M. M. Kasliwal,et al.  A radio counterpart to a neutron star merger , 2017, Science.

[9]  T. Sakamoto,et al.  The X-ray counterpart to the gravitational-wave event GW170817 , 2017, Nature.

[10]  Steven M. Crawford,et al.  PySALT: the SALT science pipeline , 2010, Astronomical Telescopes + Instrumentation.

[11]  X. Y. Li,et al.  LIGO/Virgo S190425z: 1.5m OSN and 10.4m imaging of the UVOT source field. , 2019 .

[12]  V. M. Lipunov,et al.  MASTER Optical Detection of the First LIGO/Virgo Neutron Star Binary Merger GW170817 , 2017, 1710.05461.

[13]  B. Stalder,et al.  ATLAS: A High-cadence All-sky Survey System , 2018, 1802.00879.

[14]  Anna M. Moore,et al.  Unveiling the dynamic infrared sky , 2019, Nature Astronomy.

[15]  Gautham Narayan,et al.  RAPID: Early Classification of Explosive Transients Using Deep Learning , 2019, Publications of the Astronomical Society of the Pacific.

[16]  David Blair,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[17]  Chris L. Fryer,et al.  Swift and NuSTAR observations of GW170817: Detection of a blue kilonova , 2017, Science.

[18]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. IV. Detection of Near-infrared Signatures of r-process Nucleosynthesis with Gemini-South , 2017, 1710.05454.

[19]  L. S. Collaboration,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017 .

[20]  T. Nagayama,et al.  LIGO/Virgo S190425z : IRSF/SIRIUS NIR photometry of ZTF19aarykkb and ZTF19aarzaod. , 2019 .

[21]  Mansi M. Kasliwal,et al.  ON DISCOVERING ELECTROMAGNETIC EMISSION FROM NEUTRON STAR MERGERS: THE EARLY YEARS OF TWO GRAVITATIONAL WAVE DETECTORS , 2013, 1309.1554.

[22]  William H. Lee,et al.  LIGO/Virgo S190425z: RATIR non-detection of the Swift/UVOT source. , 2019 .

[23]  B. J. Shappee,et al.  Early spectra of the gravitational wave source GW170817: Evolution of a neutron star merger , 2017, Science.

[24]  Iain A. Steele,et al.  SPRAT: Spectrograph for the Rapid Acquisition of Transients , 2014, Astronomical Telescopes and Instrumentation.

[25]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[26]  M. Coughlin,et al.  The Kitt Peak Electron Multiplying CCD demonstrator , 2019, Monthly Notices of the Royal Astronomical Society.

[27]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[28]  J. Wright,et al.  ABSOLUTE-MAGNITUDE DISTRIBUTIONS OF SUPERNOVAE , 2014, 1403.5755.

[29]  Tum,et al.  Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers , 2014, 1406.2687.

[30]  E. Ofek,et al.  Spitzer Mid-Infrared Detections of Neutron Star Merger GW170817 Suggests Synthesis of the Heaviest Elements , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[31]  N. Christensen,et al.  Optimizing multitelescope observations of gravitational-wave counterparts , 2019, Monthly Notices of the Royal Astronomical Society.

[32]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[33]  Mariusz Gromadzki,et al.  The Rapid Reddening and Featureless Optical Spectra of the Optical Counterpart of GW170817, AT 2017gfo, during the First Four Days , 2017, 1710.05853.

[34]  C. A. Wilson-Hodge,et al.  An Ordinary Short Gamma-Ray Burst with Extraordinary Implications: Fermi-GBM Detection of GRB 170817A , 2017, 1710.05446.

[35]  Enrico Ramirez-Ruiz,et al.  Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event , 2017, Nature.

[36]  C. Fremling,et al.  Fully automated integral field spectrograph pipeline for the SEDMachine: pysedm , 2019, Astronomy & Astrophysics.

[37]  H. Janka,et al.  Prompt merger collapse and the maximum mass of neutron stars. , 2013, Physical review letters.

[38]  Eric Burns,et al.  2900 Square Degree Search for the Optical Counterpart of Short Gamma-Ray Burst GRB 180523B with the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[39]  T. Nagayama,et al.  LIGO/Virgo S190425z : IRSF/SIRIUS NIR photometric follow-up observation of the Swift/UVOT Transient. , 2019 .

[40]  A. Rest,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta , 2017, 1710.05456.

[41]  L. Singer,et al.  GRB 180728B: Zwicky Transient Facility Follow-Up of a Fermi Short GRB (Trigger 554505003). , 2018 .

[42]  B. Metzger,et al.  Production of the entire range of r-process nuclides by black hole accretion disc outflows from neutron star mergers , 2016, 1607.05290.

[43]  Umaa Rebbapragada,et al.  Real-bogus classification for the Zwicky Transient Facility using deep learning , 2019, Monthly Notices of the Royal Astronomical Society.

[44]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[45]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[46]  William H. Lee,et al.  RATIR Follow-up of LIGO/Virgo Gravitational Wave Events , 2017, 1706.03898.

[47]  David O. Jones,et al.  LIGO/Virgo S190425z: Further confirmation for the classification of PS19qp/AT 2019ebq as a supernova. , 2019 .

[48]  S. Scott,et al.  LIGO/Virgo S190425z: ANU 2.3m early observations of ZTF19aarykkb. , 2019 .

[49]  J. O. M. Ulchaey,et al.  DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 SQUARE DEGREES : iPTF 13 BXL AND GRB 130702 , 2013 .

[50]  M. Chan,et al.  Optimizing searches for electromagnetic counterparts of gravitational wave triggers , 2018, 1803.02255.

[51]  F. Barone,et al.  Advanced Virgo: a 2nd generation interferometric gravitational wave detector , 2014 .

[52]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[53]  J. Lattimer,et al.  Black-Hole-Neutron-Star Collisions , 1974 .

[54]  David O. Jones,et al.  LIGO/Virgo S190425z: Keck/MOSFIRE NIR spectroscopy of PS19qp (= AT 2019ebq). , 2019 .

[55]  William H. Lee,et al.  ELECTROMAGNETIC TRANSIENTS POWERED BY NUCLEAR DECAY IN THE TIDAL TAILS OF COALESCING COMPACT BINARIES , 2011, 1104.5504.

[56]  P. Cowperthwaite,et al.  Follow-up of the Neutron Star Bearing Gravitational-wave Candidate Events S190425z and S190426c with MMT and SOAR , 2019, The Astrophysical Journal.

[57]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[58]  M. Graham,et al.  LIGO/Virgo S190425z: ZTF photometry of the UVOT transient candidate hours before discovery. , 2019 .

[59]  D. A. Kann,et al.  LIGO/Virgo S190425z: CAHA-GRANDMA Observation of the Swift UVOT Source. , 2019 .

[60]  J. Prieto,et al.  Light curves of the neutron star merger GW170817/SSS17a: Implications for r-process nucleosynthesis , 2017, Science.

[61]  Chris L. Fryer,et al.  A luminosity distribution for kilonovae based on short gamma-ray burst afterglows , 2018, Monthly Notices of the Royal Astronomical Society.

[62]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[63]  A. Palmese,et al.  LIGO/Virgo S190425z: Potential host galaxy of UVOT candidate counterpart found in BLISS. , 2019 .

[64]  J. Prochaska,et al.  Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source , 2017, Science.

[65]  Larry Denneau,et al.  A kilonova as the electromagnetic counterpart to a gravitational-wave source , 2017, Nature.

[66]  A. Miller,et al.  A Morphological Classification Model to Identify Unresolved PanSTARRS1 Sources: Application in the ZTF Real-time Pipeline , 2018, Publications of the Astronomical Society of the Pacific.

[67]  Umaa Rebbapragada,et al.  Machine Learning for the Zwicky Transient Facility , 2019, Publications of the Astronomical Society of the Pacific.

[68]  Jr.,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. II. UV, Optical, and Near-infrared Light Curves and Comparison to Kilonova Models , 2017, 1710.05840.

[69]  C. Guidorzi,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. V. Rising X-Ray Emission from an Off-axis Jet , 2017, 1710.05431.

[70]  Larry Denneau,et al.  The Pan-STARRS wide-field optical/NIR imaging survey , 2010, Astronomical Telescopes + Instrumentation.

[71]  C. Guidorzi,et al.  The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta , 2017, 1710.05457.

[72]  J.Lee,et al.  THE DARK ENERGY CAMERA , 2004, The Dark Energy Survey.

[73]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[74]  M. Rees,et al.  Shocked by GRB 970228: the afterglow of a cosmological fireball , 1997, astro-ph/9704153.

[75]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[76]  J. Prochaska,et al.  Electromagnetic evidence that SSS17a is the result of a binary neutron star merger , 2017, Science.

[77]  A. Abbott Hungary rewards highly cited scientists with bonus grants , 2017, Nature.

[78]  Vicky Kalogera,et al.  A Deep Chandra X-Ray Study of Neutron Star Coalescence GW170817 , 2017, 1710.05852.

[79]  James E. Gunn,et al.  AN EFFICIENT LOW RESOLUTION AND MODERATE RESOLUTION SPECTROGRAPH FOR THE HALE TELESCOPE , 1982 .

[80]  Peter E. Nugent,et al.  DISCOVERY AND REDSHIFT OF AN OPTICAL AFTERGLOW IN 71 deg2: iPTF13bxl AND GRB 130702A , 2013, 1307.5851.

[81]  J. Prieto,et al.  LIGO/Virgo S190425z: No Optical Detection of the Swift/UVOT Transient in ASAS-SN observations hours before and after discovery. , 2019 .

[82]  Sebastiano Bernuzzi,et al.  GW170817: Joint Constraint on the Neutron Star Equation of State from Multimessenger Observations , 2017, 1711.03647.

[83]  D. Frail,et al.  Illuminating gravitational waves: A concordant picture of photons from a neutron star merger , 2017, Science.

[84]  Li-Xin Li,et al.  Transient Events from Neutron Star Mergers , 1998 .

[85]  I. Andreoni LIGO/Virgo S200114f: More candidates from the Zwicky Transient Facility , 2020 .

[86]  K. Maguire,et al.  LIGO/Virgo GW190425z: GTC spectroscopic classification of AT2019ebq/PS19qp. , 2019 .

[87]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[88]  B. A. Boom,et al.  Estimating the Contribution of Dynamical Ejecta in the Kilonova Associated with GW170817 , 2017, 1710.05836.

[89]  Saurabh W. Jha,et al.  The Discovery of the Electromagnetic Counterpart of GW170817: Kilonova AT 2017gfo/DLT17ck , 2017, 1710.05854.

[90]  D. Perley,et al.  LIGO/Virgo S190425z: Liverpool Telescope spectroscopy of ZTF19aarykkb. , 2019 .

[91]  Richard Walters,et al.  The SED Machine: A Robotic Spectrograph for Fast Transient Classification , 2017, 1710.02917.

[92]  Mansi M. Kasliwal,et al.  Census of the Local Universe (CLU) Narrowband Survey. I. Galaxy Catalogs from Preliminary Fields , 2017, The Astrophysical Journal.

[93]  Brian D. Bue,et al.  THE NEEDLE IN THE 100 deg2 HAYSTACK: UNCOVERING AFTERGLOWS OF FERMI GRBs WITH THE PALOMAR TRANSIENT FACTORY , 2015, 1501.00495.

[94]  R. Itoh,et al.  The GROWTH Marshal: A Dynamic Science Portal for Time-domain Astronomy , 2019, Publications of the Astronomical Society of the Pacific.

[95]  W. Ip,et al.  LIGO/Virgo S190425z: Lulin observations of the Swift/UVOT transient. , 2019 .

[96]  T. Morokuma,et al.  LIGO/Virgo S190425z: J-GEM spectroscopic observations of AT2019ebq/PS19qp with Subaru/FOCAS. , 2019 .

[97]  Kazuya Matsubayashi,et al.  J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817 , 2017, 1710.05848.

[98]  E. Bozzo,et al.  INTEGRAL Detection of the First Prompt Gamma-Ray Signal Coincident with the Gravitational-wave Event GW170817 , 2017, 1710.05449.

[99]  Saurav Dhital,et al.  THE SLOAN DIGITAL SKY SURVEY DATA RELEASE 7 SPECTROSCOPIC M DWARF CATALOG. I. DATA , 2011, 1101.1082.

[100]  S. Scott,et al.  LIGO/Virgo S190425z: No i-band detection of the Swift/UVOT transient in SkyMapper observations. , 2019 .

[101]  J. Sollerman,et al.  LIGO/Virgo S190425z: Additional Candidates from the Zwicky Transient Facility. , 2019 .

[102]  L. Singer,et al.  GRB180913A: Zwicky Transient Facility Follow-Up of a Fermi Short GRB (Trigger 558557292). , 2018 .

[103]  D. Perley,et al.  LIGO/Virgo S190425z: Keck NIR spectroscopy shows AT2019ebq is a supernova. , 2019 .

[104]  C. Ott,et al.  The influence of neutrinos on r-process nucleosynthesis in the ejecta of black hole-neutron star mergers , 2016, 1601.07942.

[105]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[106]  Gustavo A. Medrano-Cerda,et al.  The Liverpool Telescope: performance and first results , 2004, SPIE Astronomical Telescopes + Instrumentation.

[107]  M. Rees,et al.  Spectral Features from Ultrarelativistic Ions in Gamma-Ray Bursts? , 1998 .

[108]  J. Sollerman,et al.  Detectability of compact binary merger macronovae , 2016, 1611.09822.

[109]  Columbia,et al.  Optical Follow-up of Gravitational-wave Events with Las Cumbres Observatory , 2017, 1710.05842.

[110]  N. T. Zinner,et al.  Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r‐process nuclei , 2010, 1001.5029.

[111]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[112]  S. Rosswog The multi-messenger picture of compact binary mergers , 2015, 1501.02081.

[113]  Hans-Thomas Janka,et al.  Neutron-star Radius Constraints from GW170817 and Future Detections , 2017, 1710.06843.

[114]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .