Synchronization-based approach for parameters identification in delayed chaotic neural networks

[1]  J. Hale Theory of Functional Differential Equations , 1977 .

[2]  J J Hopfield,et al.  Neurons with graded response have collective computational properties like those of two-state neurons. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[3]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[4]  F. Zou,et al.  Bifurcation and chaos in cellular neural networks , 1993 .

[5]  Carroll,et al.  Experimental and Numerical Evidence for Riddled Basins in Coupled Chaotic Systems. , 1994, Physical review letters.

[6]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[7]  Parlitz,et al.  Synchronization-based parameter estimation from time series. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[8]  Parlitz,et al.  Estimating model parameters from time series by autosynchronization. , 1996, Physical review letters.

[9]  Chun-Mei Yang,et al.  Impulsive control of Lorenz system , 1997 .

[10]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[11]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[12]  Kazuo Tanaka,et al.  A unified approach to controlling chaos via an LMI-based fuzzy control system design , 1998 .

[13]  Guanrong Chen,et al.  Switching manifold approach to chaos synchronization , 1999 .

[14]  Amritkar,et al.  Dynamic algorithm for parameter estimation and its applications , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  S. Arik Global asymptotic stability of a class of dynamical neural networks , 2000 .

[16]  Xinghuo Yu,et al.  An invariant-manifold-based method for chaos control , 2001 .

[17]  J García-Ojalvo,et al.  Spatiotemporal communication with synchronized optical chaos. , 2000, Physical review letters.

[18]  Xiao Fan Wang Slower speed and stronger coupling: adaptive mechanisms of chaos synchronization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  Hongtao Lu Chaotic attractors in delayed neural networks , 2002 .

[20]  S. Boccaletti,et al.  Synchronization of chaotic systems , 2001 .

[21]  H. Sakaguchi Parameter evaluation from time sequences using chaos synchronization. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Liu Min,et al.  Parameter Identification and Tracking of a Unified System , 2002 .

[23]  Jinhu Lu,et al.  Parameters identification and synchronization of chaotic systems based upon adaptive control , 2002 .

[24]  R. Konnur Synchronization-based approach for estimating all model parameters of chaotic systems. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Debin Huang,et al.  Stabilizing near-nonhyperbolic chaotic systems with applications. , 2004, Physical review letters.

[26]  Debin Huang Synchronization-based estimation of all parameters of chaotic systems from time series. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Guanrong Chen,et al.  Global Synchronization of Coupled Delayed Neural Networks and Applications to Chaotic CNN Models , 2004, Int. J. Bifurc. Chaos.

[28]  Jinde Cao,et al.  Synchronization criteria of Lur’e systems with time-delay feedback control , 2005 .

[29]  Zhigang Zeng,et al.  Global asymptotic stability and global exponential stability of delayed cellular neural networks , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[30]  Debin Huang,et al.  A Simple Adaptive-feedback Controller for Identical Chaos Synchronization , 2022 .

[31]  Shengyuan Xu,et al.  Novel global asymptotic stability criteria for delayed cellular neural networks , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  C. Grebogi,et al.  Using geometric control and chaotic synchronization to estimate an unknown model parameter. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[33]  Jinde Cao,et al.  Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters. , 2005, Chaos.

[34]  Aiguo Wu,et al.  Comment on "Estimating model parameters from time series by autosynchronization". , 2005, Physical review letters.

[35]  Chi-Chuan Hwang,et al.  Exponential synchronization of a class of chaotic neural networks , 2005 .

[36]  Debin Huang Adaptive-feedback control algorithm. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[37]  Jinde Cao,et al.  Adaptive synchronization of neural networks with or without time-varying delay. , 2006, Chaos.

[38]  Jan Naudts,et al.  Parameter estimation in non-extensive thermostatistics , 2006 .

[39]  Jinde Cao,et al.  Adaptive exponential synchronization of delayed chaotic networks , 2006 .

[40]  Jinde Cao,et al.  Robust impulsive synchronization of coupled delayed neural networks with uncertainties , 2007 .