Multi-Dimensional Causal Discovery
暂无分享,去创建一个
Stefano Bromuri | Kostas Stathis | Ulrich Schaechtle | Kostas Stathis | Ulrich Schaechtle | S. Bromuri
[1] L. Lathauwer,et al. On the Best Rank-1 and Rank-( , 2004 .
[2] Aapo Hyvärinen,et al. Discovery of Non-gaussian Linear Causal Models using ICA , 2005, UAI.
[3] Charles Kemp,et al. How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.
[4] Christopher M. Bishop,et al. Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .
[5] S. Bressler,et al. Granger Causality: Basic Theory and Application to Neuroscience , 2006, q-bio/0608035.
[6] P. Spirtes,et al. Causation, prediction, and search , 1993 .
[7] Aapo Hyvärinen,et al. A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..
[8] A. Seth,et al. Granger causality and transfer entropy are equivalent for Gaussian variables. , 2009, Physical review letters.
[9] Tamara G. Kolda,et al. Tensor Decompositions and Applications , 2009, SIAM Rev..
[10] F. R. Rosendaal,et al. Prediction , 2015, Journal of thrombosis and haemostasis : JTH.
[11] Demetri Terzopoulos,et al. Multilinear independent components analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[12] Radford M. Neal. Pattern Recognition and Machine Learning , 2007, Technometrics.
[13] C. Granger. Investigating causal relations by econometric models and cross-spectral methods , 1969 .
[14] J. Pearl. Causality: Models, Reasoning and Inference , 2000 .
[15] Kenneth A. Bollen,et al. Structural Equations with Latent Variables , 1989 .
[16] Bernhard Schölkopf,et al. Causal Inference on Time Series using Structural Equation Models , 2012, ArXiv.
[17] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[18] Aapo Hyvärinen,et al. Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity , 2010, J. Mach. Learn. Res..
[19] Aapo Hyvärinen,et al. Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity , 2008, ICML '08.
[20] Erkki Oja,et al. Independent component analysis: algorithms and applications , 2000, Neural Networks.
[21] Schreiber,et al. Measuring information transfer , 2000, Physical review letters.
[22] Tamara G. Kolda,et al. MATLAB Tensor Toolbox , 2006 .
[23] Judea Pearl,et al. Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.
[24] P. Hoyer,et al. On Causal Discovery from Time Series Data using FCI , 2010 .
[25] Joos Vandewalle,et al. On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..
[26] Esther Rodríguez-Villegas,et al. COMMODITY12: A smart e-health environment for diabetes management , 2013, J. Ambient Intell. Smart Environ..
[27] Andrzej Cichocki,et al. Nonnegative Matrix and Tensor Factorization T , 2007 .
[28] Yoshinobu Kawahara,et al. Analyzing relationships among ARMA processes based on non-Gaussianity of external influences , 2011, Neurocomputing.
[29] Anil K. Seth,et al. A MATLAB toolbox for Granger causal connectivity analysis , 2010, Journal of Neuroscience Methods.
[30] Richard Scheines,et al. Automated Search for Causal Relations: Theory and Practice , 2010 .
[31] Peter Spirtes,et al. An Anytime Algorithm for Causal Inference , 2001, AISTATS.
[32] M. Winterhalder,et al. 17 Granger Causality : Basic Theory and Application to Neuroscience , 2006 .