Multi-Dimensional Causal Discovery

We propose a method for learning causal relations within high-dimensional tensor data as they are typically recorded in non-experimental databases. The method allows the simultaneous inclusion of numerous dimensions within the data analysis such as samples, time and domain variables construed as tensors. In such tensor data we exploit and integrate non-Gaussian models and tensor analytic algorithms in a novel way. We prove that we can determine simple causal relations independently of how complex the dimensionality of the data is. We rely on a statistical decomposition that flattens higher-dimensional data tensors into matrices. This decomposition preserves the causal information and is therefore suitable for structure learning of causal graphical models, where a causal relation can be generalised beyond dimension, for example, over all time points. Related methods either focus on a set of samples for instantaneous effects or look at one sample for effects at certain time points. We evaluate the resulting algorithm and discuss its performance both with synthetic and real-world data.

[1]  L. Lathauwer,et al.  On the Best Rank-1 and Rank-( , 2004 .

[2]  Aapo Hyvärinen,et al.  Discovery of Non-gaussian Linear Causal Models using ICA , 2005, UAI.

[3]  Charles Kemp,et al.  How to Grow a Mind: Statistics, Structure, and Abstraction , 2011, Science.

[4]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[5]  S. Bressler,et al.  Granger Causality: Basic Theory and Application to Neuroscience , 2006, q-bio/0608035.

[6]  P. Spirtes,et al.  Causation, prediction, and search , 1993 .

[7]  Aapo Hyvärinen,et al.  A Linear Non-Gaussian Acyclic Model for Causal Discovery , 2006, J. Mach. Learn. Res..

[8]  A. Seth,et al.  Granger causality and transfer entropy are equivalent for Gaussian variables. , 2009, Physical review letters.

[9]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[10]  F. R. Rosendaal,et al.  Prediction , 2015, Journal of thrombosis and haemostasis : JTH.

[11]  Demetri Terzopoulos,et al.  Multilinear independent components analysis , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[12]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[13]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[14]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[15]  Kenneth A. Bollen,et al.  Structural Equations with Latent Variables , 1989 .

[16]  Bernhard Schölkopf,et al.  Causal Inference on Time Series using Structural Equation Models , 2012, ArXiv.

[17]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[18]  Aapo Hyvärinen,et al.  Estimation of a Structural Vector Autoregression Model Using Non-Gaussianity , 2010, J. Mach. Learn. Res..

[19]  Aapo Hyvärinen,et al.  Causal modelling combining instantaneous and lagged effects: an identifiable model based on non-Gaussianity , 2008, ICML '08.

[20]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[21]  Schreiber,et al.  Measuring information transfer , 2000, Physical review letters.

[22]  Tamara G. Kolda,et al.  MATLAB Tensor Toolbox , 2006 .

[23]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[24]  P. Hoyer,et al.  On Causal Discovery from Time Series Data using FCI , 2010 .

[25]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[26]  Esther Rodríguez-Villegas,et al.  COMMODITY12: A smart e-health environment for diabetes management , 2013, J. Ambient Intell. Smart Environ..

[27]  Andrzej Cichocki,et al.  Nonnegative Matrix and Tensor Factorization T , 2007 .

[28]  Yoshinobu Kawahara,et al.  Analyzing relationships among ARMA processes based on non-Gaussianity of external influences , 2011, Neurocomputing.

[29]  Anil K. Seth,et al.  A MATLAB toolbox for Granger causal connectivity analysis , 2010, Journal of Neuroscience Methods.

[30]  Richard Scheines,et al.  Automated Search for Causal Relations: Theory and Practice , 2010 .

[31]  Peter Spirtes,et al.  An Anytime Algorithm for Causal Inference , 2001, AISTATS.

[32]  M. Winterhalder,et al.  17 Granger Causality : Basic Theory and Application to Neuroscience , 2006 .